|
- 2016
LiCl改性尼龙6的结晶行为及受限机制
|
Abstract:
为了扩宽尼龙6(PA6)的工程应用领域,首先,通过熔融挤出制备了LiCl/PA6复合材料;然后,利用XRD、DSC、流变仪及电子拉伸试验机等研究了LiCl含量对PA6结晶行为和力学性能的影响及结晶的受限机制。结果表明:随LiCl含量的增加, LiCl/PA6复合体系的成核温度、晶体生长温度及熔融温度均向低温方向移动;成核密度和速率均逐渐减小,导致结晶能力下降,结晶度由原来的36.5%降低为5.6%;γ晶结晶度逐渐降低,而α晶结晶度先增大后减小, γ晶与α晶发生转变。此外, LiCl/PA6复合材料的拉伸强度和冲击强度均先增大后减小;当LiCl含量为6.0wt%时,冲击强度达到最大值7.9 kJ/m2,是纯PA6的冲击强度(5.5 J/m2)的1.44倍。 In order to broaden the engineering application areas of polyamide 6 (PA6), LiCl/PA6 composites were prepared by melting extrusion firstly. Then, the effects of LiCl content on crystallization behaviors and mechanical properties of PA6 as well as the restricted mechanisms of crystallization were investigated by XRD, DSC, rheometer and electronic tensile testing machine et al. The results show that with LiCl content increasing, the temperature of nucleation, the growth temperature and melt temperature of spherulites of LiCl/PA6 composite systems all move toward low temperature direction; the density and rate of nucleation both decrease gradually, which leads to the decrease of crystallization ability, and the crystallinity decreases from the original 36.5% to 5.6%; the crystallinity of γ-crystal decreases gradually, while the crystallinity of α-crystal initially increases and then decreases, transformation occurs between γ-crystal and α-crystal. In addition, the tensile strength and impact strength of LiCl/PA6 composites both increase firstly and then decrease, when LiCl content is 6.0wt%, impact strength reaches the maximum 7.9 kJ/m2, which is 1.44 times of the impact strength of pure PA6 (5.5 kJ/m2). 贵州省教育厅自然科学研究项目(黔教合KY字[2013]158);贵州省教育厅研究生卓越人才计划(黔教研ZYRC字[2013]006号)
[1] | GARCIA-GUTIERREZ M C, HERNANDEZ J J, NOGALES A, et al. Influence of shear on the templated crystallization of poly(butylene terephthalate)/single wallcarbon nanotube nanocomposites[J]. Macromolecules, 2008, 41(3):844-851. |
[2] | CHEN Q, FAN Y R, ZHENG Q. Rheological scaling and modeling of shear-enhanced crystallization rate of polypropylene[J]. Rheological Acta, 2006, 46(2):305-316. |
[3] | 全国塑料制品标准化技术委员会. 塑料拉伸性能的测定:GB/T 1040-2006[S]. 北京:中国标准出版社, 2006. Committee of National Standardization for Plastics Products. Plastic-Determination of tensile properties:GB/T 1040-2006[S]. Beijing:Standards Press of China, 2006(in Chinese). |
[4] | 全国塑料制品标准化技术委员会. 塑料悬臂冲击强度的测定:GB/T 1843-2008[S]. 北京:中国标准出版社, 2008. Committee of National Standardization for Plastics Products. Plastics-Determination of Izod impact strength:GB/T 1843-2008[S]. Beijing:Standards Press of China, 2008(in Chinese). |
[5] | SHAO X L, WEI Y F, WU L, et al. Studies on crystal morphology and crystallization kinetics of polyamide 66 filled with CaCO3 of different sizes and size distribution[J]. Polymer-Plastics Technology and Engineering, 2012, 51(6):590-596. |
[6] | ZHANG Y, HAO L, HU G. Investigations of the non-isothermal crystallization behavior of polyamide 6/polyethylene-octene/organomontmorillonite nanocomposites[J]. Polymer-Plastics Technology and Engineering, 2012, 51(8):780-785. |
[7] | HO J C, WEI K H. Induced γ→α crystal transformation in blends of polyamide 6 and liquid crystalline copolyester[J]. Macromolecules, 2000, 33(14):5181-5186. |
[8] | WENG W G, CHEN G H, WU D J. Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites[J]. Polymer, 2003, 44(26):8119-8132. |
[9] | MAI B, LI Z, LIU R, et al. Confined crystallization of core-forming blocks in nanoscale self-assembled micelles of poly(ε-caprolactone)-b-poly(ethylene oxide) in aqueous solution[J]. Journal of Polymer Research, 2013, 20(11):299-310. |
[10] | ZHANG J M, ZHU M Y, LIAN Z X, et al. Influencing on structure and mechanical properties of PA6/PP blends for different graft yield compatibilizer[J]. Advanced Materials Research, 2011, 189-193:533-536. |
[11] | 刘典新, 郑强, 李诚, 等. 氯化钙对尼龙6/马来酸酐接枝乙烯-辛烯共聚物共混体系形态与结晶行为影响的流变学分析[J]. 高分子材料科学与工程, 2014, 30(7):90-95. LIU D X, ZHENG Q, LI C, et al. Effect of calcium chloride on morphology and crystallization behavior of polyamide6/maleic anhydride grafting ethylene-octene copolymer compounds by dynamic rheological method[J]. Polymer Materials Science & Engineering, 2014, 30(7):90-95(in Chinese). |
[12] | WEI W, QIU L, WANG X L, et al. Drawing and tensile properties of polyamide 6/calcium chloride composite fibers[J]. Journal of Polymer Research, 2011, 18(6):1841-1850. |
[13] | 黄保贵, 陶栋梁, 徐怡庄, 等. 聚己内酰胺-锌盐相互作用的研究[J]. 光谱学与光谱分析, 2003, 23(3):506-508. HUANG B G, TAO D L, XU Y Z, et al. Interaction between polyamide and zinc salt[J]. Spectroscopy and Spectral Analysis, 2003, 23(3):506-508(in Chinese). |
[14] | SREELATHA K, PREDEEP P. Structure analysis of iodine doped polyamide nylon 6 complex films by FTIR spectroscopy and X-ray diffraction studies[J]. AIP Advances, 2011, 1391(1):128-130. |
[15] | RAMIRO J, EGUIAZABAL J I, NAZABAL J. Structure and mechanical properties of blends of poly(ether imide) and an amorphous polyamide[J]. European Polymer Journal, 2006, 42(2):458-467. |
[16] | 徐丽华, 邱丽, 杨永珍, 等. 多壁碳纳米管/尼龙6复合材料的液相共混法制备及其性能[J]. 复合材料学报, 2012, 29(2):73-78. XU L H, QIU L, YANG Y Z, et al. Liquid blending preparation and properties multiwalled carbon nanotubes/polyamide 6 composites[J]. Acta Materiae Compositae Sinica, 2012, 29(2):73-78(in Chinese). |
[17] | LU S J, ZHOU Z M, YU J, et al. Study on the influence of crystal structures on the performance of low melting polyamide6[J]. Polymer-Plastics Technology and Engineering, 2013, 52(2):157-162. |
[18] | TEH J W, BLOM H P, RUDIN A. A study on the crystallization behaviour of polypropylene, polyethylene and their blends by dynamic mechanical and thermal methods[J]. Polymer, 1994, 35(8):1680-1687. |
[19] | VASANTHAN N R, SALEM D. FTIR spectroscopic characterization of structural changes in polyamide-6 fibers during annealing and drawing[J]. Journal of Polymer Science Part B:Polymer Physics, 2001, 7(5):536-547. |
[20] | WU Q, LIU X, WU Q, et al. FT-IR spectroscopic study of hydrogen bonding in PA6/clay nanocomposites[J]. Polymer, 2002, 43(8):2445-2449. |
[21] | PAYNE A R, WHITTAKER R E, SMITH J F. Effect of vulcanization on the low-strain dynamic properties of filled rubbers[J]. Journal of Applied Polymer Science, 1972, 16(5):1191-1212. |
[22] | WANG S F, SHEN L, ZHANG W D, et al. Preparation and mechanical properties of chitosan/carbon nanotubes composites[J]. Biomacromolecules, 2005, 6(6):3067-3072. |