全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

复合纳米材料对混凝土动态力学性能的影响
Effects of composite nanomaterials on dynamic mechanical properties of concretes

DOI: 10.13801/j.cnki.fhclxb.20151008.001

Keywords: 纳米增强混凝土,复合纳米材料,纳米Fe2O3,纳米CaCO3,动态抗压强度,比能吸收,微观物象
nanoparticles reinforced concrete
,composite nanomaterials,nano-Fe2O3,nano-CaCO3,dynamic compressive strength,specific energy absorption,micro shape

Full-Text   Cite this paper   Add to My Lib

Abstract:

制备了掺量为0.2%(以水泥质量为基准)的纳米Fe2O3(NF)、复掺纳米Fe2O3和纳米CaCO3 2种纳米材料(NFC)以及复掺纳米Fe2O3、纳米CaCO3和纳米SiO2 3种纳米材料(NFCS)的混凝土,之后采用直径100 mm分离式霍普金森压杆(SHPB)试验装置测试了养护龄期为28 d的3种混凝土在不同平均应变率等级下的动力特性并与普通混凝土(PC)进行对比研究。结果表明:准静态载荷下,复合纳米材料的掺入可有效调高混凝土的抗压强度;冲击载荷作用下,中低水平平均应变率时, NFC动态抗压强度最高, 80 s-1时NFC比PC高31.6%,高水平平均应变率下NF动态抗压强度具有优势,在125 s-1时, NF比PC高16%;NF在冲击载荷作用下峰值应变具有显著优势,具有良好的变形性能;以比能量吸收作为韧性评价指标,在平均应变率为75 s-1和125 s-1时, NF比PC增幅达到66.6%和75.7%。通过SEM照片分析,纳米Fe2O3颗粒增大了水泥石密实度,进而改善了NF的强度和韧性;由压汞试验分析,纳米CaCO3颗粒在混凝土中,改善了水泥石孔隙结构。 Concrete with nano-Fe2O3 (NF), double kinds of nanomaterials (nano-Fe2O3 and nano-CaCO3, NFC), and three kinds of nanomaterials (nano-Fe2O3, nano-CaCO3, nano-SiO2, NFCS) all containing the addition of 2.0% (based on cement quality)were prepared, then the dynamic properties of three kinds of concrete were compared with the plain concrete (PC) under varied average strain rate levels by the 100 mm-diameter split Hopkinson pressure bar (SHPB) test device after a 28 d maintenance period. The results show that the addition of composite nanomaterials can effectively improve the compressive strength of concrete under quasi static load. Under impact load, NFC has the highest dynamic compressive strength at middle and low average strain rate, it is 31.6% higher than that of PC at 80 s-1. Dynamic compressive strength of NF has an advantage at high level of average strain rate with 16% higher than that of PC at the average strain rate of 125 s-1. Peak strain of NF has significant advantages under impact load, which verified good deformation performance; From the perspective of the evaluation index of specific energy absorption, NF increases by 66.6% and 75.7% than that of PC at the average strain rate of 75 s-1and 125 s-1. SEM photograph analysis shows that nano-Fe2O3 particles increases the compactness of cement stone, improves the strength and toughness of NF. Mercury injection test analysis show that nanoparticles CaCO3 improve the pore structure of cement stone in concrete. 国家自然科学基金(51208507,51378497);陕西省青年科技新星项目(KJXX-81)

References

[1]  王凤龙. Fe3O4空心纳米结构及其复合材料的合成与吸波性能研究[D]. 济南:山东大学. 2012. WANG F L. Synthesis and microwave absorption properties of hollow magnetite nanostructures and their composites[D]. Jinan:Shandong University, 2012(in Chinese).
[2]  李惠, 欧进平. 智能混凝土与结构[J]. 工程力学, 2007, 12(24):45-61. LI H, OU J P. Smart concrete and structures[J]. Engineering Mechanics, 2007, 12(24):45-61(in Chinese).
[3]  中国建筑科学研究院. 普通混凝土力学性能实验方法标准:GB/T 50081. 2002[S]. 北京:中国建筑工业出版社, 2003. China Academy of Building Research. Mechanical properties of ordinary concrete test method standards:GB/T 50081. 2002[S]. Beijing:China Building Industry Press, 2003(in Chinese).
[4]  王礼立. 应力波基础[M]. 北京:国防工业出版社, 2010:52-60. WANG L L. Foundation of stress waves[M]. Beijing:National Defense Industry Press, 2010:52-60(in Chinese).
[5]  曹方良. 纳米材料对超高性能混凝土强度的影响研究[D]. 长沙:湖南大学, 2012. CAO F L. Study on the effects of nano-materials on the strength of ultra high performance concrete[D]. Changsha:Hunan University, 2012(in Chinese).
[6]  李为民, 许金余. 玄武岩纤维对混凝土的增强和增韧效应[J]. 硅酸盐学报, 2008, 36(4):476-486. LI W M, XU J Y. Strengthening and toughening in basalt fiber-reinforced concrete[J]. Journal of the Chinese Ceramic Society, 2008, 36(4):476-486(in Chinese).
[7]  李固华, 高波. 纳米微粉SiO2和CaCO3对混凝土性能影响[J]. 铁道学报, 2006, 28(2):131-136. LI G H, GAO B. Effect of level SiO2 and level CaCO3 on concret performance[J]. Journal of the China Railway Society, 2006, 28(2):131-136(in Chinese).
[8]  丁世敬. 电磁吸波混凝土材料关键技术研究[D]. 西安:西安电子科技大学. 2010. DING S J. Study on electromagnetie wave absorbing concrete and its key technologies[D]. Xi'an:Xidian University, 2010(in Chinese).
[9]  王宝民. 纳米SiO2高性能混凝土性能及机理研究[D]. 大连:大连理工大学, 2009. WANG B M. Study on performance and mechanism of high performance concrete with nano-SiO2[D]. Dalian:Dalian University of Technology, 2009(in Chinese).
[10]  郭宝林. 掺纳米二氧化硅高性能混凝土性能试验研究[D]. 大连:大连理工大学, 2005. GUO B L. Laboratory study on the properties of high performance concrete with nano-SiO2[D]. Dalian:Dalian University of Technology, 2005(in Chinese).
[11]  张茂花. 纳米路面混凝土的全寿命性能[D]. 哈尔滨:哈尔滨工业大学, 2007. ZHANG M H. Life-cycle performance of nano-pavement concrete[D]. Harbin:Harbin Institute of Technology, 2007(in Chinese).
[12]  叶青, 张泽南, 孔德玉, 等. 掺纳米SiO2和掺硅粉高强混凝土性能的比较[J]. 建筑材料学报, 2003, 6(4):381-386. YE Q, ZHANG Z N. KONG D Y, et al. Comparison of properties of high strength concrete with nano-SiO2 and silica fume added[J]. Journal of Building Materials, 2003, 6(4):381-386(in Chinese).
[13]  刘军忠, 许金余, 吕晓聪, 等. 冲击压缩荷载下角闪岩的动态力学性能试验研究[J]. 岩石力学与工程学报, 2009, 28(10):2113-2120. LIU J Z, XU J Y, LU X C, et al. Experimental study on dynamic mechanical properties of amphibolites under impact compressive loding[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10):2113-2120(in Chinese).
[14]  LU G, YU T Y. Energy absorption of structures and materials[M]. London:Woodhead Publishing, 2003:20-96.
[15]  HUI L, XIAO H G, YUAN J, et al. Microstructure of cement mortar with nano-particles[J]. Composites Part B:Engineering, 2004, 35:185-189.
[16]  方秦, 洪建, 张锦华, 等. 混凝土类材料SHPB实验若干问题探讨[J]. 工程力学, 2014, 31(5):1-14. FANG Q, HONG J, ZHANG J H, et al. Issues of SHPB test on concrete-like material[J]. Engineering Mechanics, 2014, 31(5):1-14(in Chinese).
[17]  侯学彪, 黄丹怔, 王委. 掺纳米SiO2高性能混凝土研究进展[J]. 混凝土, 2013(3):5-9. HOU X B, HUANG D Z, WANG W. Recent progress on high performance concrete with nano-SiO2 particles[J]. Concrete, 2013(3):5-9(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133