|
- 2018
雷电流组合波形下碳纤维/环氧树脂基复合材料层压板雷击损伤试验
|
Abstract:
为了评估碳纤维/环氧树脂基复合材料位于不同飞机雷击分区下的雷击损伤程度及损伤特征,采用A+B、D+B+C和A+B+C+D 3种不同的雷电流波形组合,对两类不同尺寸复合材料层压板试验件(Type1和Type2)进行了模拟雷电流冲击试验,通过目视损伤观察和超声损伤扫描,分析评估了复合材料位于飞机1A区、2A区及1B区时的雷击损伤程度及特征,同时还对含铜网防护碳纤维/环氧树脂基复合材料层压板在不同雷击分区下的雷击防护效果进行了评估。结果表明:不同雷击分区下,碳纤维/环氧树脂基复合材料在雷电流作用下的损伤模式基本一致,包括纤维断裂、基体烧蚀及分层损伤;对于相同类型试验件,1B区对应雷击损伤程度最严重,其次为2A区,1A区损伤程度最小;在相同雷击分区下,长宽比较小的Type1型试验件雷击损伤程度大于长宽比较大的Type2型试验件;0.25 mm厚铜网能够有效对碳纤维/环氧树脂基复合材料进行雷击防护,位于1A区、2A区及1B区的含防护与无防护Type2型试件,前者雷击损伤程度较后者分别下降88.9%、53.9%和68.7%。 In order to evaluate the lighting strike damage degree and characteristics of the carbon fiber/epoxy resin matrix composite material under different aircraft lighting strike zones, three different lighting current combined waveforms (A+B, D+B+C and A+B+C+D) were used to simulate lighting strike experimental research on two kinds of composite specimens with different sizes(Type1 and Type2).Damage was assessed using visual inspection and ultrasonic testing to analyze and evaluate the lighting strike damage degree and characteristics of the composite material on the plane 1A, 2A and 1B lighting zone. Meanwhile, the damage resistance characteristics of the carbon fiber/epoxy resin matrix composite specimens with copper wire mesh were compared to the benchmark values of unprotected specimens under different lighting strike zones. The results show that under different lighting strike zones, the damage modes of the carbon fiber/epoxy resin matrix composite materials caused by lighting current are basically the same, including fiber fracture, matrix ablation and delamination. For the same type of test specimens, most severe lighting damage is in the 1B lighting zone followed by 2A lighting zone, and 1A lighting zone has the least degree of damage. Type1 test specimens with small length-width radio have the less damage degree than the ones with large length-width radio under the same lighting strike zones. 0.25 mm copper wire mesh can effectively protect the carbon fiber/epoxy resin matrix composite material. Type2 protected test specimens have 88.9%, 53.9% and 68.7% damage degree compared to the unprotected ones, which are located in 1A, 2A and 1B lighting zones. 国家自然科学基金(51477132)
[1] | 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1):1-10(in Chinese). |
[2] | 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese). |
[3] | WANG F S, DING N, LIU Z Q, et al. Ablation damage characteristic and residual strength prediction of carbon fiber/epoxy composite suffered from lightning strike[J]. Composite Structures, 2014, 117:222-233. |
[4] | JAMES A M. ACEE composite structures technology[C]. NASA-CR-172360, Washington:National Aeronautics and Space Administration, 1984. |
[5] | RVPKE E D. Lightning direct effects handbook[M]. London:Lighting Techologies Press, 2002. |
[6] | HIRANO Y, KATSUMATA S, IWAHORI Y, et al. Artificial lighting on graphite/epoxy composite laminate[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(10):1461-1470. |
[7] | KAWAKAMI H, FERABOLI P. Lightning strike resistance and tolerance of scarf-repaired mesh-protected carbon fiber composites[J]. Composites Part A:Applied Science and Manufacturing, 2011, 42(9):1247-1262. |
[8] | OGASAWARA T, HIRANO Y, YOSHIMURA A. Coupled thermal-electrical analysis for carbon fiber/epoxy composites exposed to simulated lighting current[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(8):973-981. |
[9] | FERABOLI P, MILLER M. Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike[J]. Composites Part A:Applied Science and Manufacturing, 2009, 40(6-7):954-967. |
[10] | YIN J J, LI S L, CHANG F. Ablation damage characteristic analysis of composite laminate with fastener subjected to lightning strike[J]. Applied Composite Materials, 2016, 23(4):821-837. |
[11] | 刘志强, 岳珠峰, 王富生. 不同防护形式复合材料雷击损伤分区特性[J]. 复合材料学报, 2015, 32(2):284-294. LIU Z Q, YUE Z F, WANG F S. Divisional characteristics of lighting damage of composites with different protective formulas[J]. Acta Materiae Compositae Sinica, 2015, 32(2):284-294(in Chinese). |
[12] | SEA. Aircraft lightning environment and related test waveforms:SEA ARP 5412-2005[S]. London:SAE International, 2005. |
[13] | 国防科学技术工业委员会. 军用飞机雷电防护:GJB 2639-96[S]. 北京:总装备部军标出版发行部, 1996. Commission of Science, Technology and Industry for National Defense. Lighting protection of military aircraft:GJB 2639-96[S]. Beijing:General Armament Department Military Standard Publishing Department, 1996(in Chinese). |
[14] | 中国人民解放军总装备部. 军用飞机雷电防护鉴定试验方法:GJB 3567-99[S]. 北京:总装备部军标出版发行部, 1999. China PLA General Preparation Department. Lighting protection qualification test techniques for military aircraft:GJB 3567-99[S]. Beijing:General Armament Department Military Standard Publishing Department, 1999(in Chinese). |
[15] | American Society for Testing and Materials. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates:ASTM 7137M-07[S]. West Conshohocken:American Society for Testing and Materials, 2007. |
[16] | 中国国家标准化管理委员会. 定向纤维增强聚合物复合材料拉伸性能试验方法:GB/T 3354-2014[S]. 北京:中国标准出版社, 2014. Standardization Administration of the People's Republic of China. Test method for tensile properties of orientation fiber reinforced polymer matrix composite materials:GB/T 3354-2014[S]. Beijing:Standard Press of China, 2014(in Chinese). |