|
- 2018
基于酵母发酵致孔的小麦麸质蛋白/聚丙烯酸钠复合多孔水凝胶的合成及溶胀性能
|
Abstract:
以1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)活化丙烯酸(AA)羧基与小麦麸质蛋白(WG)接枝交联,酵母菌素分解WG中淀粉等多糖产生的CO2作为孔模板,水溶液中自由基聚合制备了WG/聚丙烯酸钠(PNaA)多孔复合水凝胶(WG/PNaA)。FTIR分析表明,WG链上—OH、—NH2等与AA成功接枝,并与中和的丙烯酸钠(NaA)在N,N'-亚甲基双丙烯酰胺(MBA)存在下聚合交联。场发射SEM(FESEM)证实,适量酵母菌素在WG体系中产生的CO2可作为孔模板,在WG/PNaA网络中形成蜂窝状多孔结构,这种孔状结构不仅提高了WG/PNaA复合水凝胶在蒸馏水和生理盐水中的平衡溶胀倍率,也使其Schott's准二级动力学起始溶胀速率常数Kis提高至无酵母致孔样的5倍,Ritger半经验方程分析也证实其扩散系数n=0.5642,为non-Fickian溶胀,即孔状网络在凝胶溶胀初期有利于水分子快速扩散。考察了WG/PNaA复合水凝胶在蒸馏水-生理盐水、pH为2.2和7.4时磷酸缓冲溶液中的溶胀敏感性。结果表明,经过5次反复溶胀-去溶胀循环后仍具有良好的响应性,即多孔WG/PNaA复合凝胶同时具有灵敏可逆的盐和pH敏感性,为该水凝胶在药物控释领域应用提供了潜在可能。 Wheat gluten (WG) reacted with acrylic acid (AA) in the promotion of 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) to produce WG-AA chains. Following, yeast decomposed the starch that existed in WG to produce CO2, which used as pore template to prepare a novel porous WG/poly(sodium acrylic)(PNaA) composite hydrogel(WG/PNaA) via free-radical graft copolymerization of sodium acrylate and WG-AA chains in the aqueous solution. FTIR spectra demonstrate that AA is grafted onto the WG chains, and the composite hydrogel is formed successfully in the presence of cross-linker N,N'-methylene discrylamide (MBA). Field emission SEM (FESEM) also displays that incorporating the proper amount of yeast into the hydrogel matrix can form porous interlinked channels within the composite hydrogel network. The porous WG/PNaA composite hydrogel shows greater equilibrium swelling capacity both in distilled water and in 0.9% NaCl solution, and the Schott's second-order swelling dynamic constant Kis is improved to 5 times compared with non-yeast exited hydrogel. Ritger's semi-empirical equation analysis also confirms that the water transport mechanism of the porous WG/PNaA composite hydrogel is non-Fickian diffusion type (n=0.5642), which means, the porous structure of the composite hydrogel is benefit to the water molecules spread quickly at the beginning swelling. The swelling-deswelling behaviors of the porous WG/PNaA composite hydrogel in distilled water-0.9% NaCl solution and in pH 2.2 and pH 7.4 phosphate buffer solution were assessed and the results show that the composite hydrogel exhibits excellent salt, pH-dependent swelling responsiveness after 5 times repeated swelling, which providing a potential application in the field of drug controlled-release. 甘肃省中药质量与标准研究重点实验室培育基地开放基金(ZYZL16-011);甘肃省科技计划资助项目(148RJZA074);甘肃中医药大学中青年基金(2305016601)
[1] | XIAO X M, YU L, XIE F W, et al. One-step method to prepare starch-based superabsorbent polymer for slow release of fertilizer[J]. Chemical Engineering Journal, 2017, 309(1):607-616. |
[2] | 黄曹, 卢玲, 瞿东滨, 等. 新型人工髓核材料——果胶/聚乙烯醇复合水凝胶的制备及其溶胀性能[J]. 复合材料学报, 2008, 25(1):69-74. HUANG Cao, LU Ling, QU Dongbin, et al. Preparation and swelling properties of pectin/poly(vinyl alchol)[J]. Acta Materiae Compositae Sinica, 2008, 25(1):69-74(in Chinese). |
[3] | LIU J, SU Y, LI Q, et al. Preparation of wheat straw based superabsorbent resins and their applications as adsorbents for ammonium and phosphate removal[J]. Bioresource Techno-logy, 2013, 143(9), 32-39. |
[4] | LEE H X D, WONG H S, BUENFELD N R. Self-sealing of cracks in concrete using super-absorbent polymer[J]. Cement and Concrete Research, 2016, 79(1):194-208. |
[5] | 何辉, 陈志辉, 吴家瑶, 等. 天然高分子基混凝土减水剂研究进展[J]. 高分子材料科学与工程, 2016, 32(11):178-183. HE Hui, CHEN Zhihui, WU Jiayao, et al. Advances in concrete water-reducing agents based on natural polymers[J]. Polymer Materials Science & Engineering, 2016, 32(11):178-183(in Chinese). |
[6] | 卢国冬, 燕青芝, 宿新泰, 等. 多孔水凝胶研究进展[J]. 化学进展, 2007, 19(4):485-493. LU Guodong, YAN Qingzhi, SU Xintai, et al. Progress of porous hydrogels[J]. Progress in Chemistry, 2007, 19(4):485-493(in Chinese). |
[7] | CHEVILLARD A, ANGELLIER-COUSSY H, GUILLARD V. Investigating the biodegradation pattern of an ecofriendly pesticide delivery system based on wheat gluten and organically modified montmorillonites[J]. Polymer Degradation and Stability, 2012, 97(10):2060-2068. |
[8] | CHIOU B S, JAFRI H, CAO T, et al. Modification of wheat gluten with citric acid to produce superabsorbent materials[J]. Journal of Applied Polymer Science, 2013, 129(6):3192-3197. |
[9] | LIAO L, LUO Y C, ZHAO M M, et al. Preparation and characterization of succinic acid deamidated wheat gluten microspheres for encapsulation of fish oil[J]. Colloids and Surfaces B:Biointerfaces, 2012, 92(4):305-314. |
[10] | KHOSRAVI S, NORDQVIST P, KHABBAZ F, et al. Wetting and film formation of wheat gluten dispersions applied to wood substrates as particle board adhesives[J]. European Polymer Journal, 2015, 67(6):476-482. |
[11] | ROBERTSON G H, CAO T K, GREGORSKI K S, et al. Modification of vital wheat gluten with phosphoric acid to produce high free swelling capacity[J]. Journal of Applied Polymer Science, 2014, 131(2):39440(1-11). |
[12] | 朱寿进, 刘法谦, 王璟朝, 等. 新型羧甲基壳聚糖水凝胶的合成与表征[J]. 高等学校化学学报, 2014, 35(4):863-868. ZHU Shoujin, LIU Faqian, WANG Jingzhao, et al. Synthesis and characterization of novel carboxymethyl chitosan hydrogel[J]. Chemical Journal of Chinese University, 2014, 35(4):863-868(in Chinese). |
[13] | 陆萍. 小麦麸质蛋白材料的改性研究[D]. 上海:华东理工大学, 2012. LU P. Research on modification of wheat gluten materials[D]. Shanghai:East China University of Science and Technology, 2012(in Chinese). |
[14] | ZHANG M Y, CHENG Z Q, ZHAO T Q, et al. Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran-poly(acrylic acid) super-absorbent hydrogel[J]. Journal of Agricultural and Food Chemistry, 2014, 62(35):8867-8874. |
[15] | 史艳茹, 李奇, 王丽, 等. 三维网络水凝胶在重金属和染料吸附方面的研究进展[J]. 化工进展, 2011, 30(10):2294-2303. SHI Yanru, LI Qi, WANG Li, et al. Progress in hydrogels with three-dimensional cross-linked polymeric networks for the adsorption of heavy metal ions and dyes[J]. Chemical Industry and Engineering Progress, 2011, 30(10):2294-2303(in Chinese). |
[16] | 叶满辉, 王丽. 聚天冬氨酸/木质纤维素水凝胶的制备及吸附性能[J]. 复合材料学报, 2016, 33(9):2094-2103. YE Manhui, WANG Li. Preparation and adsorption properties of polyaspartic acid/lignocelluloses hydrogels[J]. Acta Materiae Compositae Sinica, 2016, 33(9):2094-2103(in Chinese). |
[17] | POURSAMARA S A, AZAMIB M, MOZAFARI M. Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique[J]. Colloids and Surfaces B:Biointerfaces, 2011, 84(2), 310-316. |
[18] | THAMMAHIWES S, RIYAJAN S A, KAEWTAIP K. Preparation and properties of wheat gluten based bioplastics with fish scale[J]. Journal of Cereal Science, 2017, 75(5):186-191. |
[19] | EL-WAKIL N A, HASSAN E A, ABOU-ZEID R E, et al. Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging[J]. Carbohydrate Polymers, 2015, 124(6):337-346. |
[20] | SCHOTT H. Swelling kinetics of polymers[J]. Journal of Macromolecular Science:Part B, 1992, 31(1):1-9. |
[21] | GUILHERME M R, AOUADA F A, FAJARDO A R, et al. Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier:A review[J]. European Polymer Journal, 2015, 72(11):365-385. |
[22] | 刘云, 张传杰, 赵瑾朝, 等. 明胶/海藻酸钠(京尼平交联)互穿网络膜的制备与性能[J]. 复合材料学报, 2015, 32(4):997-1006. LIU Yun, ZHANG Chuanjie, ZHAO Jinchao, et al. Preparation and properties of gelatin/sodium alginate (cross-linked with genipin) interpenetra-ting polymeric network films[J]. Acta Materiae Compositae Sinica, 2015, 32(4):997-1006(in Chinese). |
[23] | HASEEB M T, HUSSAIN M A, YUK S H, et al. Polysaccharides based superabsorbent hydrogel from Linseed:Dynamic swelling, stimuli responsive on-off switching and drug release[J]. Carbohydrate Polymers, 2016, 136(1):750-756. |
[24] | RITGER P L, PEPPAS N A. A simple equation for description of solute release I:Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs[J]. Journal of controlled Release, 1987, 5(1):23-36. |