全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

玻璃纤维增强树脂基复合材料夹芯板-钢板连接接头的弯曲性能
Flexural behavior of hybrid joints of glass fiber reinforced composite sandwich panel-steel plate

DOI: 10.13801/j.cnki.fhclxb.20170821.001

Keywords: 玻璃纤维增强树脂基复合材料夹芯板,接头,弯曲强度,疲劳特性,失效模式
glass fiber reinforced resin composite(GRP) sandwich panel
,joint,bending strength,fatigue characteristic,failure mode

Full-Text   Cite this paper   Add to My Lib

Abstract:

以PVC泡沫或Balsa轻木为芯材的玻璃纤维增强树脂基复合材料(GRP)夹芯板目前广泛应用于船舶与海洋工程结构中。论文设计不同参数的GRP夹芯板-钢板混合接头模型,进行四点弯曲加载下的静力及疲劳试验研究,同时运用ABAQUS软件结合MSC.fatigue软件对接头的静态及疲劳弯曲失效进行数值模拟,分析了接头的弯曲强度、刚度和失效模式,并研究了接头填充区材料及长度、钢板嵌入填充区长度等参数对接头弯曲性能的影响。结果表明:弯曲载荷作用下接头破坏发生在连接结合部,失效模式则因填充区的不同设计而不同;对提高接头的弯曲性能较为明显的设计参数包括将钢板延伸到接头填充区或者选择Balsa轻木替代PVC泡沫芯材;对于受到疲劳弯曲载荷的接头模型,在较大疲劳载荷水平下,所有试件在未达到106次循环时均发生了疲劳破坏;而在相对较小的疲劳载荷水平下,经过106次循环后所有试件全部完好,并且接头的剩余强度与疲劳试验前的静强度相近,表明小载荷水平下接头的疲劳次数对其承载能力无影响。 Glass fiber reinforced resin composite(GRP) sandwich panels with PVC foam or Balsa wood as core material are widely used in ship construction and ocean engineering. Flexural behaviors of hybrid joints of sandwich panel-steel plate which subjected to static and fatigue loads respectively, were investigated with both numerical and experimental methods. Different parameter sets of hybrid joint specimens were designed and fabricated. Static and fatigue four-point bending experiments were implemented to study the bending strength, stiffness and failure modes of joints. ABAQUS and MSC. Fatigue softwares were also adopted to simulate their failure characteristics. The influences of filler material, geometric length of filler and the inserted length of steel plate on the bending performance of the joint were respectively assessed. The results show that failure occurs near the filler area of joints under bending load, and failure mode mainly depends on different filler parameters. Extending the steel end to filler area can obviously improve bending performance of joint, as well as adopting Balsa wood as filler material. All specimens are failed before 106 cycles in the larger fatigue load case, while in the lower fatigue load case, all the specimens are nearly intact after 106 cycles and their residual strengths are quite close to their static ultimate strength. It is indicated that fatigue cycles with smaller loading amplitudes have little influence on their loading capacities. 深水半潜式支持平台研发专项(工信部联装2016[546])

References

[1]  WRIGHT P N H, WU Y, GIBSON A G. Factors affecting mechanical strength of steel to composite connections for warship structures[C]. FRC 20029th International Conference on Fibre Reinforced Composites, New York:CCME University of Newcastle, 2002.
[2]  CLIFFORD S M, MANGER C I C, CLYNE T W, et al. Characterization of glass fiber reinforced vinyl ester tosteel joint for use between a naval GRP superstructure and a steel hull[J]. Composite Structures, 2002, 57(1-4):59-66.
[3]  NOURY P, HAYMAN B, MCGEORGE D, et al. Light-weight construction for advanced shipbuilding-recent development[R]. Norway:Det Norske Veritas, 2002.
[4]  BURLOVI AC'G D, MILAT A, BALUNOVI AC'G M, et al. Finite element analysis of composite-to-steel type of joint for marine industry[J]. Welding in the world, 2016, 60(5):1-9.
[5]  董一帆. 三维点阵复合材料上层建筑力学性能与结构设计研究[D]. 哈尔滨工程大学, 2014. DONG Yifan. Design and analysis of 3D lattice composite ship superstructure[D]. Harbin:Harbin Engineering University, 2014(in Chinese).
[6]  GRENESTEDT J L, CAO J. Design and testing of joints composite sandwich/steel hybrid ship hulls[J]. Composites Part A:Applied Science & Manufacturing, 2004, 35(9):1091-1105.
[7]  ARMANIOS E A, BUCINELL R B, WILSON D W, et al. Adhesion of stainless steel to fiber reinforced vinyl ester composite[J]. Journal of Composites Technology and Research, 2002, 24(4):254-260.
[8]  MOURITZ A P, GELLERT E, BURCHILL P, et al. Review of advanced composite structures for naval ships and submarines[J]. Composite Structures, 2001, 53:21-41.
[9]  LI Y S, WANG W B. Mechanical behaviors of adhesively-bonded, bolted and hybrid composite-to-steel joints[J]. Journal of Ship Mechanics, 2011, 15(9):1052-1064.
[10]  HAYMAN B, BERGGREEN C, LUNDSGARD L C. Design of X-joints in sandwich structures for naval vessels[C]. 10th international Symposium on Pratical Design of Ships and Other Floating Structures, Houston:American Bureau of Shipping, 2007.
[11]  BOYD S W, BLAKE J I R, SHENOI R A, et al. Intergrity of hybrid steel-to-composite joints for marine application[J]. Proceedings of the Institution of Mechanical Engineers Part M:Journal of Engineering for the Maritime Environment, 2004, 218(4):235-246.
[12]  CAO J, GRENESTEDT J L. Test of a redesigned glass fibre reinforced vinyl ester to steel joint for use between a naval GRP superstructure and a steel hull[J]. Southampton:Composite Structure, 2003, 60:439-445.
[13]  BOYD S W. Strength and durability of steel to composite joints for marine application[D]. University of Southampton, 2006.
[14]  BOYD S W, BLAKE J I R, SHENOI R A. Optimization of steel-composite connections for structural marine applications[J]. Composites Part B:Engineering, 2008, 39(5):891-906.
[15]  PETINOV S V, GUCHINSKY R V. Fatigue assessment of ship superstructure at expansion joint[J]. Transactions of the Royal Institution of Naval Architects Part A:International Journal of Maritime Engineering, 2013, 155:A201-A209.
[16]  陈余岳, 姚辉. 1MW变速恒频风力机复合材料叶片设计[J]. GRP, 2004(4):1-6. CHEN Yuyue, YAO Hui. Composite blade design of 1MW variable speed constant frequency wind turbine[J]. GRP, 2004(4):1-6(in Chinese).
[17]  梅威. 基于MSC. Fatigue的散货船结构疲劳寿命分析[D]. 杭州:浙江工业大学, 2011. MEI Wei. Fatigue life analysis of bulk carries structure based on MSC. Fatigue[D]. Hangzhou:Zhejiang University of Technology, 2011(in Chinese).
[18]  刘青峰, 王发灯, 郑红霞. 疲劳分析软件MSC Fatigue的工程应用[J]. 计算机辅助工程, 2013, 22(1):492-496. LIU Qingfeng, WANG Fadeng, ZHENG Hongxia. Engineer application of fatigue analysis software MSC. Fatigue[J]. Computer Aided Engineering, 2013, 22(1):492-496(in Chinese).
[19]  王国军. MSC Fatigue疲劳分析实例指导教程[M]. 北京:机械工业出版社, 2009, 63-83. WANG Guojun. Fatigue analysis examples of the tutorial of MSC. Fatigue[J]. Beijing:China Machine Press, 2009:63-83(in Chinese).
[20]  DICKSON R F, FERNANDO G, ADAM T, et al. Fatigue behaviour of hybrid composites[J]. Journal of Material Science, 1989, 24(1):227-233.
[21]  SMITH C S. Design of marine structures in composite materials[M]. London:Elsevier Applied Science, 1990.
[22]  LI X, LI P, LIN Z. Mechanical behavior of a glass-fiber reinforced composite to steel joint for ships[J]. Journal of Marine Science and Application, 2015, 14(1):39-45.
[23]  KOTSIDIS E A, KOULOUKOURAS I G, TSOUVALIS N G, et al. Finite element parametric study of a composite-to-steel-joint[C]. International Conference on Maritime Technology, 2014.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133