全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

编织角和承载方向对三维四向编织复合材料动态压缩性能的影响
Influence of braid angle and bearing direction on dynamic compressive properties of 3D four directional braided composites

DOI: 10.13801/j.cnki.fhclxb.20170720.001

Keywords: 编织复合材料,动态力学性能,分离式霍普金森压杆,高应变率,失效形式
braided composites
,dynamic mechanical properties,split Hopkinson pressure bar,high strain rate,failure mode

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用分离式霍普金森压杆(SHPB)装置对三维四向编织碳纤维增强树脂基复合材料的动态压缩性能进行了研究。通过对编织角为20°、30°和45°的试验件分别进行沿纵向、横向和厚度方向的动态压缩试验,得到材料在800~2 000/s应变率范围内的应力-应变曲线,并与准静态压缩试验结果进行对比,研究了应变率、压缩方向及编织角对材料极限强度和弹性模量的影响。结合高速摄影记录的动态压缩过程,进一步分析了不同情况下材料的破坏模式与破坏过程。结果表明:应变率越高,材料的极限强度和弹性模量越大,材料在受压的三个方向上均具有一定的应变率强化效应,且高应变率下表现出比准静态压缩时更明显的脆性;编织角的改变对材料在三个方向上的动态压缩性能均有影响,其中对纵向的影响最为明显;不同方向受压时材料的失效形式不同,且准静态和高应变率下的失效形式也有区别。 The dynamic mechanics properties of 3D four directional braided carbon fiber reinforced resin matrix composites were investigated using split Hopkinson pressure bar(SHPB). Conducting experiments on specimens of different braid angles in longitudinal, transverse and thickness directions, the stress-strain curves of the composites were obtained at strain rate ranging from 800/s to 2 000/s, and the quasi-static compression test results were also included. The influence of strain rate, compressive direction and braid angle on ultimate strength and elastic modulus was discussed. And the processes of experiments were recorded by high-speed camera, thus the effect of strain rate and compressive direction on the failure mode can be further analyzed. The results show that the 3D four directional braided composite is sensitive to strain rate in all three compressive directions, with ultimate strength and elastic modulus both increasing as strain rate rises, and it becomes more fragile in high strain rate compared with quasi-static conditions. The braid angle has influence on dynamic compressive properties, which is the most when it comes to the longitudinal direction. The failure mode of the composite changes in different compressive directions and strain rates. 国家自然科学基金(51475227;51605218);江苏省博士后基金(1402029)

References

[1]  SABA N, SAFWAN A, SANYANG M L, et al. Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites[J]. International Journal of Biological Macromolecules, 2017, 102:822-828.
[2]  KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society, 2002, 62(11), 676-700.
[3]  王迎娜, 王玉林, 万怡灶. 三维四向编织复合材料体胞模型的修正[J]. 复合材料学报, 2004, 21(2):128-133. WANG Y N, WANG Y L, WAN Y Z. Modifying of global-cell model od 3-D and 4-step braided composites[J]. Acta Materiae Compositae Sinica, 2004, 21(2):128-133(in Chinese).
[4]  张巍, 丁辛, 李毓陵. 四步法矩形组合截面三维编织物的细观结构[J]. 复合材料学报, 2006, 23(3):165-169. ZHANG W, DING X, LI Y L. Microstructure of four step 3D braided preform with complex rectangular cross sections[J]. Acta Materiae Compositae Sinica, 2006, 23(3):165-169(in Chinese).
[5]  蔡永明. 三维编织复合材料的热粘弹性能研究[D]. 南京:南京航空航天大学, 2012. CAI Y M. Study on thermo-viscoelastic properties of three-dimensionally braided composites[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
[6]  SHOKRIEH M M, MAZLOOMI M S. A new analytical model for calculation of stiffness of three-dimensional four-directional braided composites[J]. Composite Structures, 2012, 94(3):1005-1015.
[7]  ZHENG X T, YANG Q, GOU L H. Finite element analysis of 4-step 3-dimensional braided composite structure under high velocity impact[J]. Key Engineering Materials, 2011, 462-463:289-294.
[8]  FANG G, LIANG J, LU Q, et al. Investigation on the compressive properties of the three dimensional four-directional braided composites[J]. Composite Structures, 2011, 93(2):392-405.
[9]  PEI X, LI J, CHEN K, et al. Vibration modal analysis of three-dimensional and four directional braided composites[J]. Composites Part B:Engineering, 2015, 69:212-221.
[10]  SUN B, YANG L, GU B. Strain rate effect on four-step three-dimensional braided composite compressive behavior[J]. AIAA Journal, 2005, 43(5):994-999.
[11]  SUN B, GU B. High strain rate behavior of 4-step 3D braided composites under compressive failure[J]. Journal of Materials Science, 2007, 42(7):2463-2470.
[12]  PANG B J, TAN Z H, JIA B, et al. An investigation of the dynamic behavior of 3-D four direction carbon-fibers/epoxy braid composites at various strain rates[J]. Structures Under Shock & Impact IX, 2006, 87:117-126.
[13]  谭柱华, 庞宝君, 贾斌, 等. 三维四向编织复合材料动态压缩性能实验研究[J]. 工程力学, 2008(9):209-213. TAN Z H, PANG B J, JIA B, et al. Experimental study on dynamic compressive properties of 3D four directional braided composites[J]. Engineering Mechanics, 2008(9):209-213(in Chinese).
[14]  LI D S, LU Z X, FANG D N. Longitudinal compressive behavior and failure mechanism of three-dimensional five-directional carbon/phenolic braided composites at high strain rates[J]. Materials Science & Engineering A, 2009, 526(1-2):134-139.
[15]  LI D S, LU Z X, JIANG N, et al. High strain rate behavior and failure mechanism of three-dimensional five-directional carbon/phenolic braided composites under transverse compression[J]. Composites Part B:Engineering, 2011, 42(2):309-317.
[16]  沈玲燕, 李永池, 王志海, 等. 三维正交机织玻璃纤维/环氧树脂复合材料动态力学性能的实验和理论研究[J]. 复合材料学报, 2012, 29(4):157-162. SHEN L Y, LI Y C, WANG Z H, et al. Experimental and theoretical research on the dynamic properties of 3D orthogonal woven E-glass fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2012, 29(4):157-162(in Chinese).
[17]  ZHANG Y, JIANG L, SUN B, et al. Transverse impact behaviors of four-step 3-D rectangular braided composites from unit-cell approach[J]. Journal of Reinforced Plastics & Composites, 2012, 31(4):233-246.
[18]  LI J, JIAO Y, SUN Y, et al. Experimental investigation of cut-edge effect on mechanical properties of three-dimensional braided composites[J]. Materials & Design, 2007, 28(9):2417-2424.
[19]  ZUO W W, XIAO L Y, LIAO D X. Statistical strength analyses of the 3-D braided composites[J]. Composites Science & Technology, 2007, 67(10):2095-2102.
[20]  ZHANG F, WAN Y, GU B, et al. Impact compressive behavior and failure modes of four-step three-dimensional braided composites-based meso-structure model[J]. International Journal of Damage Mechanics, 2015, 24(6):805-827.
[21]  WU X, GU B, SUN B. Comparisons of axial compression behaviors between four-directional and five-directional braided composite tubes under high strain rate loading[J]. Journal of Composite Materials, 2016, 70(2):377-389.
[22]  赵九州. 三维编织复合材料冲击行为与动态强度研究[D]. 哈尔滨:哈尔滨工业大学, 2016. ZHAO J Z. Research on the impact behavior and dynamic strength of 3-D woven composite[D]. Harbin:Harbin Institute of Technology, 2016(in Chinese).
[23]  陈军红, 徐伟芳, 谢若泽, 等. 两种不同微结构的高硅氧/酚醛树脂基复合材料动态压缩性能研究[J]. 中国测试, 2016, 42(10):113-118. CHEN J H, XU W F, XIE R Z, et al. Dynamic compressive properties of two high silica glass/phenolic composites with different microstructures[J]. China Measurement & Test, 2016, 42(10):113-118(in Chinese).
[24]  ZHOU H, HU D, ZHANG W, et al. The transverse impact responses of 3-D braided composite I-beam[J]. Composites Part A:Applied Science and Manufacturing, 2017, 94:158-169.
[25]  卢芳云. 霍普金森杆实验技术[M]. 北京:科学出版社, 2013. LU F Y. Hopkinson bar techniques[M]. Beijing:Science Press, 2013(in Chinese).
[26]  CAPRINO G. Residual strength prediction of impacted CFRP laminates[J]. Journal of Composite Materials, 1984, 18(6):508-518.
[27]  SIERAKOWSKI R L, NEWAZ G M. Damage tolerance in advanced composites[J]. Journal of Composites Technology & Research, 1995, 19(2):1.
[28]  FLANAGAN M P, ZIKRY M A, WALL J W, et al. An experimental investigation of high velocity impact and penetration failure modes in textile composites[J]. Journal of Composite Materials, 1999, 33(12):1080-1103.
[29]  GU B. A microstructure model for finite-element simulation of 3D rectangular braided composite under ballistic penetration[J]. Philosophical Magazine, 2007, 87(30):4643-4669.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133