|
- 2018
乙二胺化氧化石墨烯-羟基硅油/超支化聚氨酯三元复合材料的制备与性能
|
Abstract:
采用乙二胺部分还原修饰氧化石墨烯(GO)获得EGO,并将其作为改性剂。以异氟尔酮二异氰酸酯、聚醚二元醇、羟基硅油(HPMS)和二羟甲基丙酸等主要原料合成含硅线性聚氨酯(HPMS/LPU),然后将其接枝在实验室自制多羟基超支化聚氨酯核(HBPU-0)上,最后与EGO反应,制备了乙二胺化GO改性的含硅超支化聚氨酯(EGO-HPMS/HBPU)。利用FTIR、Raman、XRD、XPS、TEM、AFM、SEM和TG等分别对EGO-HPMS/HBPU三元复合乳液及其胶膜的形貌和性能进行了表征,并研究了EGO和羟基硅油含量对EGO-HPMS/HBPU复合材料综合性能的影响。结果表明,当添加0.5wt% EGO且变量为HPMS时,EGO在聚氨酯基体中稳定分散,与单一改性材料相比,其协同改性复合材料EGO-4wt% HPMS/HBPU综合性质最佳,此时,其不同失重条件下热解温度的提高展示材料良好的稳定性,24 h吸水率降至5.13%,水接触角为101.3°,EGO-4wt% HPMS/HBPU的拉伸强度与断裂伸长率分别为11.18 MPa和553.2%,获得了疏水、手感光滑柔软的复合产品。 Graphene oxide (GO) was partially modified with ethylenediamine to obtain EGO, used as a modifier. Linear polyurethane containing silicone was firstly synthesized, using isophorone diisocyanate, polyether diol, hydroxyl silicone(HPMS) and dimethylol propionic acid as the main raw materials, then it was grafted onto the polyhydroxy hyperbranched polyurethane core(HBPU-0) from laboratory homemade, and finally it reacted with EGO to prepare ethanediamined GO/hyperbranched polyurethane containing silicone(EGO-HPMS/HBPU). The morphology and properties of the ethylenediamined GO-hydroxyl silicone/hyperbranched polyurethane composite emulsion and its films were characterized by FTIR, Raman, XRD, XPS, TEM, AFM, SEM and TG, and the effects of the contents of EGO and hydroxyl silicone oil on EGO-HPMS/HBPU composite properties were studied. The results show that EGO is stably dispersed in HBPU matrix when the amount of HPMS is 4wt% and EGO is 0.5wt%. Compared with the single modified material, the properties of the synergistic modified EGO-4wt%HPMS/HBPU composites are the best. The increase of the pyrolysis temperature under different mass loss displays the good stability of the material, and the 24 h water absorption reduces to 5.13%, and the water contact angle is 101.3°. The tensile strength and elongation at break of EGO-4wt%HPMS/HBPU are 11.18 MPa and 553.2%, respectively, to get hydrophobic and feeling smooth and soft composite products. 国家自然科学基金(51173001);安徽高校自然科学研究重点项目(KJ2016A792);安徽省自然科学基金(11040606M59)
[1] | HSIAO S T, MA C C M, TIEN H W, et al. Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite[J]. ACS Applied Materials & Interfaces, 2015, 7(4):2817-2826. |
[2] | TANG B, WANG L, XU Y, et al. Hexadecanol/phase change polyurethane composite as form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2016, 144:1-6. |
[3] | 国家标准化管理委员会. 塑料拉伸性能的测定第1部分:总则:GB/T 1040.1-2006[S]. 北京:中国标准出版社, 2006. Standardization Administration of the People's Republic of China. Plastics-Determination of tensile properties-Part 1:General principles:GB/T 1040.1-2006[S]. Beijing:Standards Press of China, 2006. |
[4] | KIM J, COTE L J, HUANG J. Two dimensional soft material:New faces of graphene oxide[J]. Accounts of Chemical Research, 2012, 45(8):1356-1364. |
[5] | MA F, ZHANG W, WANG J, et al. Fabrication of a carbon nanotube-polyurethane composite electrode by in situ polyaddition for use in amperometric detection in capillary electrophoresis[J]. Microchimica Acta, 2016, 183(9):2579-2587. |
[6] | SUNG G, KIM J W, KIM J H. Fabrication of polyurethane composite foams with magnesium hydroxide filler for improved sound absorption[J]. Journal of Industrial and Engineering Chemistry, 2016, 44:99-104. |
[7] | MA Y Y, YI G B, WANG J C, et al. Shape-controllable and-tailorable multi-walled carbon nanotube/MnO2/shape-memory polyurethane composite film for supercapacitor[J]. Synthetic Metals, 2017, 223:67-72. |
[8] | CUI Z, HE W, LIU J, et al. Fabrication of polysiloxane-modified polyurethane sponge as low-cost organics/water separation and selective absorption material[J]. Water Science and Technology, 2016, 74(8):1936-1945. |
[9] | GAMA N, COSTA L C, AMARAL V, et al. Insights into the physical properties of biobased polyurethane/expanded graphite composite foams[J]. Composites Science and Technology, 2017, 138:24-31. |
[10] | BANDYOPADHYAY P, PARK W B, LAYEK R K, et al. Hexylamine functionalized reduced graphene oxide/polyurethane nanocomposite-coated nylon for enhanced hydrogen gas barrier film[J]. Journal of Membrane Science, 2016, 500:106-114. |
[11] | 张玉, 杨建军, 吴庆云, 等. 硅烷化还原氧化石墨烯/水性聚氨酯复合物的合成与性能[J]. 精细化工, 2016, 33(3):241-246. ZHANG Y, YANG J J, WU Q Y, et al. Preparation and performance study of reduced silanized-graphene-oxide/waterborne polyurethane composites[J]. Fine Chemicals, 2016, 33(3):241-246(in Chinese). |
[12] | KLEMPAIOVá M, DRAGúG?OVá J, KABáT P, et al. Cytotoxicity testing of a polyurethane nanofiber membrane modified with chitosan/β-cyclodextrin/berberine suitable for wound dressing application:Evaluation of biocompatibility[J]. Cell and Tissue Banking, 2016, 17(4):665-675. |
[13] | 梅锦岗, 杨建军, 吴明元, 等. 超支化水性聚氨酯的合成与表征[J]. 高分子材料科学与工程, 2012, 28(6):16-20. MEI J G, YANG J J, WU M Y, etal. Synthsis and characterization of hyperbranched waterborne polyurethane[J]. Polymer Materious Science Engineering, 2012, 28(6):16-20(in Chinese). |
[14] | 张晓辉, 杨建军, 吴庆云, 等. 有机氟改性超支化水性聚氨酯的合成与性能[J]. 高分子材料科学与工程, 2015, 31(10):17-21. ZHANG X H, YANG J J, WU Q Y, etal. Synthesis and properties of organic fluorine modified hyperbranched waterborne polyurethane[J]. Polymer Materious Science Engineering, 2015, 31(10):17-21. |
[15] | 欧忠星, 郑玉婴, 肖东升, 等. 功能化改性还原氧化石墨烯-碳纳米管/热塑性聚氨酯复合材料膜的制备及性能[J]. 复合材料学报, 2016, 33(3):486-494. OU Z X, Z Y Y, XIAO D S, et al. Preparation and properties of functional grapheme-carbon nanotube/thermoplastic polyurethane composite film[J]. Acta Materiae Compositae Sinica, 2016, 33(3):486-494(in Chinese). |
[16] | TANG X Z, MU C, ZHU W, et al. Flexible polyurethane composites prepared by incorporation of polyethylenimine-modified slightly reduced graphene oxide[J]. Carbon, 2016, 98:432-440. |
[17] | USCáTEGUI Y L, ARéVALO F R, DíAZ L E, et al. Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone[J]. Journal of Biomaterials Science, Polymer Edition, 2016, 27(18):1860-1879. |
[18] | SEYED S S I, KONG J, LU X. Aqueous-only, green route to self-healable, uv-resistant, and electrically conductive polyurethane/graphene/lignin nanocomposite coatings[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4):3148-3157. |
[19] | NI L, LI Y, ZHANG C, et al. Novel floating photocatalysts based on polyurethane composite foams modified with silver/titanium dioxide/graphene ternary nanoparticles for the visible-light-mediated remediation of diesel-polluted surface water[J]. Journal of Applied Polymer Science, 2016,133(19),doi:10.1002/app.43400. |
[20] | FU C, HU X, YANG Z, et al. Preparation and properties of waterborne bio-based polyurethane/siloxane cross-linked films by an in situ sol-gel process[J]. Progress in Organic Coatings, 2015, 84:18-27. |
[21] | ZHANG S, CHEN Z, GUO M, et al. Synthesis and characterization of waterborne UV-curable polyurethane modified with side-chain triethoxysilane and colloidal silica[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 468:1-9. |
[22] | LEI L, ZHANG Y, OU C, et al. Synthesis and characterization of waterborne polyurethanes with alkoxy silane groups in the side chains for potential application in waterborne ink[J]. Progress in Organic Coatings, 2016, 92(9):85-94. |