全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

自感知镍纳米线/水泥基复合材料的制备及压敏性能
Fabrication and piezoresistivity of self-sensing Ni nanowire/cement composites

DOI: 10.13801/j.cnki.fhclxb.20170622.001

Keywords: 多孔氧化铝模板,镍纳米线,水泥基材料,应力,应变,电阻率相对变化率
porous aluminum template
,Ni nanowires,cement-based composites,stress,strain,fractional variation in resistance

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过多孔氧化铝模板交流电沉积的方法制备了镍纳米线,以镍纳米线为导电填料、聚羧酸减水剂为分散剂,首次制备了新型的自感知镍纳米线/水泥基复合材料。通过SEM、TEM和XRD测试方法,研究了镍纳米线与镍纳米线水泥基复合材料的显微结构,与此同时,用四电极伏安法研究了镍纳米线水泥基复合材料的渗流阈值和压敏性。结果显示:所得的镍纳米线直径约为65 nm,长径比约为50;聚羧酸型减水剂能有效提高镍纳米线的分散性;水泥基复合材料的电阻率随镍纳米线的掺量增加呈现渗流特性,渗流阈值为0.5vol%;掺加1.0vol%镍纳米线的水泥基复合材料的应变灵敏度系数高达509.2,远高于电阻应变片的2.0,适用于混凝土结构应力监测的传感元件。 Nickel nanowires were obtained using the porous alumina template by the alternating current electro-deposition method. For the first time, the Ni nanowire/cement composites were fabricated by using the as-obtained nanowires as the conductive filler, and the polycarboxylate superplasticizer as the dispersant. The microstructures of Ni nanowires and Ni nanowires/cement composites were studied by SEM, TEM and XRD. Besides, the percolation threshold and piezoresistivity of Ni nanowires/cement composites were investigated by the four-pole method. The results indicate that the diameter of as-obtained Ni nanowires is about 65 nm and the aspect ratio is about 50. Also, the polycarboxylate superplasticizer can effectively improve the dispersion of Ni nanowires. In addition, the resistivity of cement-based composites displays the typical features of percolation phenomena with the increase of Ni nanowires content, the percolation threshold is concluded to be 0.5vol%. Furthermore, the measured gage factor of Ni nanowires/cement composites with 1.0vol% Ni nanowires is 509.2, far higher than the value of 2.0 for the resistance-strain gauge. The Ni nanowires/cement composites are promising for the application as the stress sensor in the concrete structures. 国家自然科学基金面上项目(51478164)

References

[1]  欧进萍. 重大工程结构智能传感网络与健康监测系统的研究与应用[J]. 中国科学基金, 2005, 19(1):8-12. OU J P. Research and practice of smart sensor networks and health monitoring systems for civil infrastructures in mainland china[J]. Bulletin of National Science Foundation of China, 2005, 19(1):8-12(in Chinese).
[2]  HAN B, DING S, YU X. Intrinsic self-sensing concrete and structures:A review[J]. Measurement, 2015, 59, 110-128.
[3]  WEN S, CHUNG D D L. Cement-based materials for stress sensing by dielectric measurement[J]. Cement & Concrete Research, 2002, 32(9):1429-1433.
[4]  XIAO H, LI H, OU J. Self-monitoring properties of concrete columns with embedded cement-based strain sensors[J]. Journal of Intelligent Material Systems & Structures, 2011, 22(2):191-200.
[5]  王玉林, 赵晓华. 碳纤维水泥基复合材料的正, 负压敏性及其机理分析[J]. 复合材料学报, 2005, 22(4):40-46. WANG Y L, ZHAO X H. Positive and negative pressure sensitivities of carbon fiber-reinforced cement-matrix compo-sites and their mechanism[J]. Acta Materiae Compositae Sinica, 2005, 22(4):40-46(in Chinese).
[6]  LI H, XIAO H G, OU J P. Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites[J]. Cement & Concrete Composites, 2006, 28(9):824-828.
[7]  LI C T, QIAN J S, TANG Z Q. Study on properties of mechanically sensitive concrete with steel slag[J]. China Concrete and Cement Products, 2005(2):5-8.
[8]  HAN B, GUAN X, OU J. Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors[J]. Sensors & Actuators A Physical, 2007, 135(2):360-369.
[9]  XU J, YAO W, WANG R. Nonlinear conduction in carbon fiber reinforced cement mortar[J]. Cement and Concrete Composites, 2011, 33(3):444-448.
[10]  KANG S T, SEO J Y, Park S H. The characteristics of CNT/Cement composites with acid-treated MWCNTs[J]. Advances in Materials Science & Engineering, 2015(6):1-9.
[11]  MARíA D C C, GALAO O, BAEZA F, et al. Mechanical properties and durability of cnt cement composites[J]. Materials, 2014, 7(3):1640-1651.
[12]  AZHARI F, BANTHIA N. Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing[J]. Cement & Concrete Composites, 2012, 34(7):866-873.
[13]  BANTHIA N, DJERIDANE S, PIGEON M. Electrical resistivity of carbon and steel micro-fiber reinforced cements[J]. Cement & Concrete Research, 1992, 22(5):804-814.
[14]  CAO J, CHUNG D D L. Carbon fiber reinforced cement mortar improved by using acrylic dispersion as an admixture[J]. Cement & Concrete Research, 2001, 31(11):1633-1637.
[15]  肖奇, 王平华, 纪伶伶, 等. 分散剂CTAB对碳纳米管悬浮液分散性能的影响[J]. 无机材料学报, 2007, 22(6):1122-1126. XIAO Q, WANG P H, JI L L, et al. Dispersion of carbon nanotubes in aqueous solution with cationic surfactant CTAB[J]. Journal of Inorganic Materials, 2007, 22(6):1122-1126(in Chinese).
[16]  樊序敏, 顾轶卓, 刘亚男, 等. 碳纳米管浸润剂对碳纤维/环氧树脂界面性能的影响[J]. 复合材料学报, 2012, 29(4):17-22. FAN X M, GU Z Z, LIU Y N, et al. Effects of wetting agent containing carbon nanotubes on interfacial property of carbon fiber/epocy resin[J]. Acta Materiae Compositae Sinica, 2012, 29(4):17-22(in Chinese).
[17]  BANTHIA N, DJERIDANE S, PIGEON M. Electrical resistivity of carbon and steel micro-fiber reinforced cements[J]. Cement and Concrete research, 1992, 22(5):804-814.
[18]  HAN B, OU J. Effects of content level and particle size of nickel powders on piezoresistivity of smart cement-based composites[J]. Smart Materials & Structure, 2010, 19(6):062012.
[19]  HAN B G, HAN B Z, OU J P. Experimental study on use of nickel powder-filled Portland cement-based composite for fabrication of piezoresistive sensors with high sensitivity[J]. Sensors & Actuators A Physical, 2009, 149(1):51-55.
[20]  XU J, WANG K. Pulsed electrodeposition of monocrystalline Ni nanowire array and its magnetic properties[J]. Applied Surface Science, 2008, 254(20):6623-6627.
[21]  HAN B G, YU Y, HAN B Z, et al. Development of a wireless stress/strain measurement system integrated with pressure-sensitive nickel powder-filled cement-based sensors[J]. Sensors & Actuators A:Physical, 2008, 147(2):536-543.
[22]  XU J, XU Y. Fabrication and magnetic property of binary Co-Ni nanowire array by alternating current electrodeposition[J]. Applied Surface Science, 2007, 253(17):7203-7206.
[23]  张华, 胡耀娟, 吴萍, 等. 大长径比有序多孔阳极氧化铝模板的制备及用于镍纳米线阵列[J]. 物理化学学报, 2012, 28(6):1545-1550. ZHANG H, HU Y J, WU P, et al. Preparation of an ultrahigh aspect ratio anodic aluminum oxide template for the fabrication of ni nanowire arrays[J]. Acta Physico-Chimica Sinica, 2012, 28(6):1545-1550(in Chinese).
[24]  刘衡, 孙明清, 李俊, 等. 掺纳米石墨烯片的水泥基复合材料的压敏性[J]. 功能材料, 2015, 46(16), 16064-16068. LIU H, SUN Q M, LI J, et al. Piezoresistive effects of cement-based composites containing graphene nanoplatelets[J]. Journal of Functional Materials, 2015, 46(16):16064-16068(in Chinese).
[25]  HAN B, ZHANG L, OU J. Influence of water content on conductivity and piezoresistivity of cement-based material with both carbon fiber and carbon black[J]. Journal of Wuhan University of Technology:Materials Science Edition, 2010, 25(1):147-151.
[26]  CHUNG D D L. Cement-based electronics[J]. Journal of Electroceramics, 2001, 6(1):75-88.
[27]  毛起, 赵斌元, 沈大荣, 等. 水泥基碳纤维复合材料压敏性的研究[J]. 复合材料学报, 1996, 13(4):8-11. MAO Q, ZHAO F Y, SHENG D L, et al. Study on the compression sensibility of cement-matrix carbon fibre composite[J]. Acta Materiae Compositae Sinica, 1996, 13(4):8-11(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133