|
- 2015
纳米细菌纤维素/聚乙烯醇复合水凝胶在模拟体液中的疲劳行为
|
Abstract:
聚乙烯醇(PVA)复合水凝胶作为半月板及软骨等长期承重植入体, 在生理环境中的疲劳行为关系到植入体的持久性和稳定性。采用弥散增强的方法将纳米细菌纤维素(BC)均匀分散在PVA水凝胶基体中, 制备了纳米BC/PVA复合水凝胶。在模拟体液(SBF)环境中, 采用压缩疲劳过程分析、疲劳前后刚度变化分析及疲劳前后尺寸稳定性分析3种方法, 测试和评价了复合水凝胶的抗疲劳性能和力学稳定性。结果表明:纳米BC/PVA复合水凝胶在模拟人体环境中具有良好的抗疲劳性能, 能够满足体内植入物的抗疲劳性能需求;纳米BC的加入可以有效提升复合水凝胶的力学稳定性和抗疲劳性能, 但随着纳米BC含量的进一步升高, 复合水凝胶的抗疲劳性能有所减弱, 当PVA与纳米BC质量比为30:1时, 纳米BC/PVA复合水凝胶疲劳前期与后期最大位移变化量最小(0.002 mm), 疲劳前后刚度变化最小(5.41%), 且疲劳前后尺寸稳定性最强, 变形量仅为0.427 mm, 抗疲劳性能达到最佳。 As long time load-bearing implants such as meniscus and cartilages, the fatigue behavior of poly(vinyl alcohol) (PVA) composite hydrogel in physical environment relates to persistence and stability of the implants. The nano bacterial cellulose (BC) was dispersed evenly into PVA hydrogel matrix to prepare nano BC/PVA composite hydrogels by method of dispersive strengthening. To investigate and evaluate the anti-fatigue property and mechanical stability of composite hydrogels in simulated body fluid (SBF) environments, three methods including compression fatigue process analysis, stiffness variation analysis and dimensional stability analysis before and after fatigue were used.The results show that the nano BC/PVA composite hydrogels have excellent anti-fatigue property in simulated body environments, which can meet the requirements of anti-fatigue property for implant in body. By adding nano BC, the mechanical stability and anti-fatigue property of composite hydrogels are improved effectively, but as the addition of nano BC increasing further, the anti-fatigue property of composite hydrogels is reduced. When the mass ratio of PVA to nano BC is 30:1, the nano BC/PVA composite hydrogels show the least maximum displacement increment (0.002 mm), the minimum change of stiffness (5.41%) and the best dimensional stability before and after fatigue, the deformation amount is merely 0.427 mm, and the fatigue property is the best. 国家自然科学基金 (51473019)
[1] | Gao L J, Gao J, Li X G, et al. Compressive creep behavior of PVA hydrogel in different simulated body fluids[J]. Journal of University of Science and Technology Beijing, 2014, 36(2): 213-217 (in Chinese). 高立军, 高瑾, 李晓刚, 等. PVA水凝胶在不同人体模拟液中的压缩蠕变行为[J]. 北京科技大学学报, 2014, 36(2): 213-217. |
[2] | Zheng Y D, Wang Y J, Chen X F, et al. Chemical reaction of PHBV/sol-gel bioglass foams for born tissue engineering in simulated body fluid[J]. Chemical Journal of Chinese Universities, 2003, 24(7): 1325-1328 (in Chinese). 郑裕东, 王迎军, 陈晓峰, 等. PHBV/sol-gel bioglass多孔材料在模拟生理溶液中的化学反应研究[J]. 高等学校化学学报, 2003, 24(7): 1325-1328. |
[3] | Gonzalez J S, Luduea L N, Ponce A, et al. Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings[J]. Materials Science and Engineering: C, 2014, 34(1): 54-61 |
[4] | Shi X, Zheng Y, Wang G, et al. pH-and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery[J]. RSC Advances, 2014, 4(87): 47056-47065. |
[5] | Su K, Chan-Park M B, Wu H, et al. Development of high refractive ZnS/PVP/PDMAA hydrogel nanocomposites for artificial cornea implants[J]. Acta Biomaterialia, 2014, 10(3): 1167-1176. |
[6] | Jiang H, Zuo Y, Zhang L, et al. Property-based design: Optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea[J]. Journal of Materials Science: Materials in Medicine, 2014, 25(3): 941-952. |
[7] | Verhulsel M, Vignes M, Descroix S, et al. A review of microfabrication and hydrogel engineering for micro-organs on chips[J]. Biomaterials, 2014, 35(6): 1816-1832. |
[8] | Huang C, Lu L, Qu D B, et al. Preparation and swelling properties of pectin/poly (vinyl alcohol) composite hydrogel for prosthetic nucleus pulposus[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 69-74 (in Chinese). 黄曹, 卢玲, 瞿东滨, 等. 新型人工髓核材料--果胶/聚乙烯醇复合水凝胶的制备及其溶胀性能[J]. 复合材料学报, 2008, 25(1): 69-74. |
[9] | Karimi A, Navidbakhsh M. Mechanical properties of PVA material for tissue engineering applications[J]. Materials Technology, 2014, 29(2): 90-100. |
[10] | Bach J S, Detrez F, Cherkaoui M, et al. Hydrogel fibers for ACL prosthesis: Design and mechanical evaluation of PVA and PVA/UHMWPE fiber constructs[J]. Journal of Biomechanics, 2013, 46(8): 1463-1470. |
[11] | Ma Y, Zheng Y, Huang X, et al. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid[J]. Biomedical Materials, 2010, 5(2): 025003-1-025003-8. |
[12] | Zheng Y, Lv H, Wang Y, et al. Performance of novel bioactive hybrid hydrogels in vitro and in vivo used for artificial cartilage[J]. Biomedical Materials, 2009, 4(1): 015015-1-015015-7. |
[13] | Huang Y, Zheng Y, Song W, et al. Poly (vinyl pyrrolidone) wrapped multi-walled carbon nanotube/poly(vinyl alcohol) composite hydrogels[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(10): 1398-1405. |
[14] | Huang J W, Xu Y M. Application of bacterial cellulose in tissue engineering[J]. Chinese Journal of Tissue Engineering Research, 2014(3): 420-425 (in Chinese). 黄建文, 徐月敏. 细菌纤维素在组织工程中的应用[J]. 中国组织工程研究, 2014(3): 420-425. |
[15] | Wang J, Gao C, Zhang Y, et al. Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial[J]. Materials Science and Engineering: C, 2010, 30(1): 214-218. |
[16] | Millon L E, Wan W K. The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2006, 79(2): 245-253. |
[17] | Tan J, Zheng Y D, Peng J, et al. Preparation and mechanical properties of layered BC nano-cellulose membrane/PVA composite hydrogels[J]. Acta Polymerica Sinica, 2012(4): 351-356 (in Chinese). 谭珏, 郑裕东, 彭江, 等. 层状纳米纤维素膜/PVA复合水凝胶的制备与力学性能研究[J]. 高分子学报, 2012(4): 351-356. |
[18] | Xu F, Li Y, Wang X, Wei J, et al. Preparation and characterization of nano-hydroxyapatite/ poly (vinyl alcohol) hydrogel biocomposite[J]. Journal of Materials Science, 2004, 39(18): 5669-5672. |
[19] | Masuda K, Horii F. CP/MAS 13C NMR analyses of the chain conformation and hydrogen bonding for frozen poly (vinyl alcohol) solutions[J]. Macromolecules, 1998, 31(17): 5810-5817. |