|
- 2015
导电炭黑改性PE-RT抗静电复合材料的形貌与性能
|
Abstract:
以耐热聚乙烯(PE-RT)管材料为基体, 以乙烯-醋酸乙烯共聚物(EVA)载体导电炭黑母粒(记作CBE)为导电介质, 配以3.86wt%的聚乙烯-辛烯共聚弹性体(POE), 采用双螺杆挤出工艺制备了具有导电网状结构形貌的PE-RT抗静电管材料, 降低了复合体系的逾渗阈值, 并将其与添加导电炭黑(记作CB)的体系进行对比, 研究了CB/PE-RT和CBE/POE/PE-RT复合体系的导电性能、微观形貌、流变性能、力学性能及热稳定性能。结果表明:POE和EVA可以产生协同作用, POE的加入改变了PE-RT与EVA的黏弹性差异, EVA在基体中达到逾渗而形成连续的网络结构。CB优先分散在黏度低、极性较高的EVA相中, 且POE能够抑制CB由EVA相向PE-RT相的迁移, CB在EVA相中容易达到逾渗, 最终由于双逾渗作用而形成导电网络结构。CB能够提高PE-RT的结晶性能及CBE/POE/PE-RT复合体系的热稳定性能, 且CB对CBE/POE/PE-RT复合体系的力学性能影响较小, 在一定程度上解决了目前填充型导电体系中导电性能与力学性能之间的矛盾, 并且POE对复合体系起到了增塑作用, 保持了PE-RT管材可弯曲的优点, 拓展了塑料管材的应用范围。 Using heat-resistant polyethylene (PE-RT) pipe materials as matrix, conductive carbon black master batch (remarked as CBE) carried by ethylene-vinyl acetate copolymer (EVA) as conductive medium, with 3.86wt% of polyethylene-octene copolymer elastomer (POE), via twin-screw extrusion process, PE-RT antistatic pipe material with conductive mesh structure was prepared, reducing the percolation threshold of composite system, and comparing it to system with addition of conductive carbon black (remarked as CB) to study the electrical properties, morphology structure, rheological properties, mechanical properties and thermal stability in CB/PE-RT and CBE/POE/PE-RT composite system. The results show that it produces a synergistic effect between POE and EVA, the addition of POE changes the differences of viscoelastic between PE-RT and EVA, so that EVA reaches percolation to form a continuous network structure in matrix, and CB disperses preferentially in EVA phase with low viscosity, higher polar, POE plays an inhibitory effect on migration of CB from EVA phase to PE-RT phase, then CB reaches percolation in EVA phase easily. Finally it forms a conductive network structure because of dual role of percolation. CB improves the crystallization property of PE-RT and thermal stability of CBE/POE/PE-RT composite system, and CB has little effects on the mechanical properties of CBE/POE/PE-RT composite system, to a certain extent, it solves the contradiction between conductivity and mechanical properties of filled-type conductivity systems. POE has a plasticizing effect on composite system, maintaining the advantages of PE-RT pipes that can be bent, expanding the application scope of plastic pipe. 扬州市邗江扬子汽车内饰件有限公司江苏省研究生工作站创新课题
[1] | Wu H A, Xu X L. The production of composite conductive PP[J]. Engineering Plastics Application, 2005, 33(3): 22-24 (in Chinese). 吴宏安, 徐锡丽. 复合型导电PP的生产[J]. 工程塑料应用, 2005, 33(3): 22-24. |
[2] | Kim B, Koncar V, Devaux E, et al. Electrical and morphological properties of PP and PET conductive polymer fibers[J]. Synthetic Metals, 2004, 146(2): 167-174. |
[3] | Tang Y, Wang Q T, Guo R, et al. A review of the development of heat resistant polyethylene pipe material[J]. Qilu Petrochemical, 2011, 39(3): 265-268 (in Chinese). 唐岩, 王群涛, 郭锐, 等. 耐热聚乙烯管材料的开发综述[J]. 齐鲁石油化工, 2011, 39(3): 265-268. |
[4] | Zu L W, Zhang X Y, Wang Y Z. Preparation and application of antistatic agent of polypropylene grafted with styrene sulfonic acid polyaniline doped with DBSA[J]. China Plastics, 2011, 25(6): 92-96 (in Chinese). 祖立武, 张晓宇, 王雅珍. DBSA参杂聚丙烯接枝苯乙烯磺酸聚苯胺抗静电剂的制备与应用[J].中国塑料, 2011, 25(6): 92-96. |
[5] | Sheng S Z, Li R X, Hao J L, et al. Development of flame retardant and anti-static polyvinyl chloride plate used in mine[J]. Coal Science and Technology, 2004, 32(10): 74-76 (in Chinese). 生寿斋, 李荣勋, 郝京林, 等. 煤矿用阻燃抗静电聚氯乙烯板材的研制[J]. 煤炭科学技术, 2004, 32(10): 74-76. |
[6] | Narkis M, Ram A, Flashner F. Polyethylene/carbon black switching materials[J]. Journal of Applied Polymer Science, 1978, 22(4): 1163-1165. |
[7] | Tchoudakov R, Breuer O, Narkis M, et al. Conductive polymer blends with low carbon black loading: High impact polystyrene/thermoplastic elastomer (styrene-isoprene-styrene)[J]. Polymer Engineering Science, 1997, 37(12): 1928-1935. |
[8] | Xu X B, Li Z M, Lu A, et al. The mechanical properties of CB/PET/PE composite materials with in situ conductive microfibrillar network[J]. Plastics Industry, 2004, 32(1): 35-37 (in Chinese). 许向彬, 李忠明, 卢艾, 等. 具有原位导电微纤网络的CB/PET/PE复合材料的力学性能[J]. 塑料工业, 2004, 32(1): 35-37. |
[9] | Wang H Z, Li L B, Liu W C, et al. Production technology research of PVC antistatic pipe materials with shell furnace carbon black[J].China Plastics, 1995, 9(5): 38-41 (in Chinese). 王惠忠, 李良波, 刘文成, 等. 谢尔炉炭黑PVC抗静电管材料生产技术研究[J]. 中国塑料, 1995, 9(5): 38-41. |
[10] | Wang J, Wang P H, Tang L X, et al. Preparation and electric properties of PP/carbon nanotube composites[J]. Polymer Materials Science and Engineering, 2011, 27(1): 138-140 (in Chinese). 王俊, 王平华, 唐龙祥, 等. PP/碳纳米管复合材料的制备及电性能[J]. 高分子材料科学与工程, 2011, 27(1): 138-140. |
[11] | Breuer O, Tchoudakov R, Narkis M, et al. Segregated structures in carbon black containing immiscible polymer blends: HIPS/LLDPE systems[J]. Journal of Applied Polymer Science, 1997, 64(6): 1097-1107. |
[12] | Yang L L, Zhong Z Y, Zhou J. Percolation behavior and PTC characteristics of polypropylene/conductive carbon black composites[J]. Plastics Technology, 2011, 39(1): 54-57 (in Chinese). 杨玲玲, 钟志有, 周金. 聚丙烯/炭黑复合材料的导电逾渗行为和PTC特性[J]. 塑料科技, 2011, 39(1): 54-57. |
[13] | Yang B, Chen X L, Chen G S, et al. Morphology and electrical properties of conductive carbon black/polypropylene-EAA composites[J]. Acta Materiae Compositae Sinica, 2007, 24(3): 78-83 (in Chinese). 杨波, 陈晓浪, 陈光顺, 等. 导电炭黑/聚丙烯-EAA复合材料的形态及电性能[J]. 复合材料学报, 2007, 24(3): 78-83. |
[14] | Mironi-Harpaz I, Narkis M. Electrical behavior and structure of polypropylene/ultrahigh molecular weight polyethylene/carbon black immiscible blends[J]. Journal of Applied Polymer Science, 2001, 81(1): 104-115. |
[15] | Wang Y, Huang R. Molding research progress of conductive carbon black polymer composites[J]. Engineering Plastics Application, 2003, 31(3): 63-65 (in Chinese). 王勇, 黄锐. 炭黑复合导电高分子材料成型加工研究进展[J]. 工程塑料应用, 2003, 31(3): 63-65. |