|
- 2017
基于响应面法的石灰-矿渣/生土复合材料热湿综合性能
|
Abstract:
采用石灰和矿渣作为改性材料制备石灰-矿渣/生土复合材料,利用响应面法研究石灰掺量、矿渣掺量和含水率对石灰-矿渣/生土复合材料热湿综合性能的影响,对石灰-矿渣/生土复合材料的制备工艺进行优化。结果表明,石灰掺量、矿渣掺量和含水率均对热湿综合性能产生影响;通过回归分析得到石灰-矿渣/生土复合材料的制备优化方案是石灰掺量(石灰与复合材料的质量比)为10.19%、矿渣掺量(矿渣与复合材料的质量比)为4.02%、含水率(水量与复合材料的质量比)为9.00%,且优化石灰-矿渣/生土复合材料平均平衡含湿量为12.725%,导热系数为0.798 W/(m · K),具有良好的热湿综合性能;通过结构分析可知,在碱性激发和微集料作用下,优化石灰-矿渣/生土复合材料内部呈现出完整、密实的结构体系特点,兼顾材料的力学、耐久性和热湿性能。 Lime and slag could be used to prepare lime-slag/soil composites. The effect of lime content, slag content and moisture content on heat & moisture comprehensive property of lime-slag/soil composites was studied by response surface methodology and the preparation technology for lime-slag/soil composites was optimized. The results show that heat & moisture comprehensive property is influenced by lime content, slag content and moisture content. Optimal program is obtained by regression analysis that lime content (mass ratio between lime and compo-site) is 10.19%, slag content (mass ratio between slag and composite) is 4.02%, and moisture content (mass ratio between water and composite) is 9.00%. Average equilibrium moisture content of optimal lime-slag/soil composites is 12.725%, thermal conductivity is 0.798 W/(m·K), optimal lime-slag/soil composites have favorable heat & moisture comprehensive property. Under the effect of alkaline excitation and micro aggregate, optimal lime-slag/soil composites have the whole and compact construction through structural analysis, and reasonable mechanical performance and heat & moisture comprehensive property. 国家杰出青年科学基金(51325803);国家自然科学基金(51278419)
[1] | 刘俊霞, 张磊, 杨久俊. 生土材料国内外研究进展[J]. 材料导报, 2012, 26(23):14-17+46. LIU J X, ZHANG L, YANG J J. International advances in raw soil materials[J]. Materials Review, 2012, 26(23):14-17+46 (in Chinese). |
[2] | 汪丽君, 张晰, 杨凯. 自然重塑-生土材料在当代建筑设计中的建构逻辑研究[J].建筑学报, 2012(s1):114-117. WANG L J, ZHANG X, YANG K. Nature remodeling:Study on the tectonic logic of earthen materials in contemporary architecture design[J]. Architectural Journal, 2012(s1):114-117 (in Chinese). |
[3] | 王军, 吕东军. 走向生土建筑的未来[J].西安建筑科技大学学报(自然科学版), 2001(02):147-149. WANG J, LV D J. To the future of the immature soil buildings[J]. Journal of Xi'an University of Architecture & Technology, 2001(02):147-149 (in Chinese). |
[4] | 赵成, 阿肯江 · 托呼提. 生土建筑研究综述[J].四川建筑, 2010, 30(1):31-33. ZHAO C, AKENJIANG T H. Study of soil buildings[J]. Sichuan Architecture, 2010, 30(1):31-33 (in Chinese). |
[5] | 王赟. 陕南生土材料改性试验研究[J].建筑科学, 2011, 27(11):49-50. WANG Y. Experimental research on raw-soil material modification in South Shaanxi[J]. Building Science, 2011, 27(11):49-50 (in Chinese). |
[6] | 刘志华, 李园枫, 杨久俊, 等. 基于土聚水泥生土材料改性试验研究[J].硅酸盐通报, 2016, 35(1):73-77. LIU Z H, LI Y F, YANG J J, et al. Experimental research on properties of raw soil modified by geopolymeric cement[J]. Bulletion of the Chinese Ceramic Society, 2016, 35(1):73-77 (in Chinese). |
[7] | 孟胜国, 谭晓倩. 碱激发生土材料强度的影响因素分析[J]. 硅酸盐通报, 2012, 31(3):645-649. MENG S G, TAN X Q. Factors analysis on strength of alkali-activated raw soil materials[J]. Bulletion of the Chinese Ceramic Society, 2012, 31(3):645-649 (in Chinese). |
[8] | 刘军, 盛国东, 刘宇. 固化剂掺量对生土墙体材料性能的影响[J]. 沈阳建筑大学学报(自然科学版), 2010, 26(3):517-521. LIU J, SHENG G D, LIU Y. Effects of the dosage of soli-dified agent on the performance of raw soil materials for wall[J]. Journal of Shenyang Jianzhu University (Natural Science), 2010, 26(3):517-521 (in Chinese). |
[9] | 刘军, 袁大鹏, 周红红, 等. 狗尾草对加筋土坯力学性能的影响[J]. 沈阳建筑大学学报(自然科学版), 2010, 26(4):720-723. LIU J, YUAN D P, ZHOU H H, et al. Impact of green bristle grass on mechanical properties of reinforced adobe[J]. Journal of Shenyang Jianzhu University (Natural Science), 2010, 26(4):720-723 (in Chinese). |
[10] | 吴瑾, 胡冗冗. 陕南地区生土民居墙体材料改性试验研究[J]. 工程抗震与加固改造, 2013, 35(5):96-100. WU J, HU R R. Improving experiment of wall material of earth houses in Southern Shanxi[J]. Earthquake Resistant Engineering and Retrofitting, 2013, 35(5):96-100 (in Chinese). |
[11] | 郑寒英, 刘家拥, 朱柯, 等. 不同改性材料对生土墙体材料性能的影响[J]. 混凝土与水泥制品, 2014(5):62-66. ZHENG H Y, LIU J Y, ZHU K, et al. Impact of different modified materials on properties of raw soil wall materials[J]. China Concrete and Cement Products, 2014(5):62-66 (in Chinese). |
[12] | DANSO H, MARTINSON D, ALI M, et al. Physical, mechanical and durability properties of soil building blocks reinforced with natural fibres[J]. Construction and Building Materials, 2015, 101:797-809. |
[13] | LIMA S, VARUM H, SALES A, et al. Analysis of the mechanical properties of compressed earth block masonry using the sugarcane bagasse ash[J]. Construction and Building Materials, 2012, 35:829-837. |
[14] | CRISTELO N, GLENDINNING S, MIRANDA T, et al. Soil stabilisation using alkaline activation of fly ash for self compacting rammed earth construction[J]. Construction and Building Materials, 2012(36):727-735. |
[15] | ALLINSON D, HALL M. Hygrothermal analysis of a stabilised rammed earth test building in the UK[J]. Energy and Buildings, 2010, 42(6):845-852. |
[16] | HALL M, ALLINSON D. Analysis of the hygrothermal functional properties of stabilised rammed earth materials[J]. Building and Environment, 2009, 44(9):1935-1942. |
[17] | DANSO H, MARTINSON D, ALI M, et al. Effect of fibre aspect ratio on mechanical properties of soil building blocks[J]. Construction and Building Materials, 2015, 83:314-319. |
[18] | 尚建丽. 传统夯土民居生态建筑材料体系的优化研究[D]. 西安:西安建筑科技大学, 2005. SHANG J L. A study of optimization of the ecological building material system of traditional rammed earth dwellings[D]. Xi'an:Xi'an University of Architecture and Technology, 2015 (in Chinese). |
[19] | JAIME F, FERNANDO M, IGNACIO C. Assessment of compressed earth blocks made in Spain:International durability tests[J]. Construction and Building Materials, 2012, 37:738-745. |
[20] | 王琴. 生土材料的改性研究[D]. 重庆:重庆大学, 2009. WANG Q. Study on modification of raw soil material[D]. Chongqing:Chongqing University, 2009 (in Chinese). |
[21] | ZAK P, ASHOUR T, KORJENIC A, et al. The influence of natural reinforcement fibers, gypsum and cement on compressive strength of earth bricks materials[J]. Construction and Building Materials, 2016(106):179-188. |
[22] | HALL M, ALLINSON D. Assessing the effects of soil grading on the moisture content-dependent thermal conductivity of stabilised rammed earth materials[J]. Applied Thermal Engineering, 2009, 29(4):740-747. |
[23] | 闫增峰, 刘加平, 王润山. 生土围护结构的等温吸湿性能的实验研究[J]. 西安建筑科技大学学报(自然科学版), 2003, 35(4):347-349. YAN Z F, LIU J P, WANG R S. Experimantal study of moisture absorption isotherms of adobe building materials[J]. Journal of Xi'an University of Architecture & Technology, 2003, 35(4):347-349 (in Chinese). |
[24] | 尚建丽, 麻向龙, 张磊. 改性生土材料吸放湿性能研究与结构分析[J].硅酸盐通报, 2015, 34(12):3413-3417. SHANG J L, MA X L, ZHANG L. Performance of humidity controlling of modified soil materials and structure analysis[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(12):3413-3417 (in Chinese). |
[25] | 张浩, 黄新杰, 宗志芳, 等. 基于热湿综合性能的棕榈醇-棕榈酸-月桂酸/SiO2复合材料制备方案的相应面法优化[J/OL]. 复合材料学报, 2017, 34(1):203-209. ZHANG H, HUANG X J, ZONG Z F, et al. Optimization of preparation program for hexadecanolpalmitic acid-lauric acid/SiO2 composite materials by response surface methodology based on heat & moisture comprehensive property[J/OL]. Acta Materiae Compositae Sinica, 2017, 34(1):203-209. |