全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

纳米石墨片-羧基丁腈橡胶复合材料结构形态与电性能
Structure morphology and electrical performance of graphite nanoplatelets-carboxylated acrylonitrile butadiene rubber composites

DOI: 10.13801/j.cnki.fhclxb.20160907.002

Keywords: 电子束辐照,羧基丁腈橡胶(XNBR),可膨胀石墨(EG),纳米石墨片(GnPs),复合材料
electron beam irradiation
,carboxylated acrylonitrile butadiene rubber (XNBR),expanded graphite(EG),graphite nanoplatelets(GnPs),composite materials

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用电子束辐照法制备纳米石墨片(GnPs)-羧基丁腈橡胶(XNBR)复合材料,研究辐射剂量对胶乳共混体系稳定性的影响,并对GnPs-XNBR复合材料的交联度、热稳定性、电性能及其形貌予以表征。结果表明:辐照后GnPs-XNBR复合材料的交联度、热稳定性和体积电阻率提高,而共混乳液的稳定性显著降低。辐照强化了乳胶粒子与石墨片之间的界面结合,形成胶乳粒子包覆石墨片的核-壳结构,进而提高石墨片在基体中分散均匀性,并使GnPs-XNBR复合材料的热稳定性和介电常数提高,导电性和介电损耗降低。 The graphite nanoplatelets(GnPs)-carboxylated acrylo nitrile butadiene rubber(XNBR) composites were prepared via emulsion blending by the electron beam irradiation. The effects of the irradiation dose on the emulsion stability, crosslinking degree, thermal stability, electrical performance and the morphology of GnPs-XNBR were characterized. The results show that crosslinking degree, the thermal stability and the volume resistance rate of GnPs-XNBR increase after irradiation, while the stability of the emulsion decrease obviously. The interface interaction between the rubber particles and graphite nanoplatelets and the distribution of graphite nanoplatelets in the rubber matrix are enhanced through the core-shell structure formation attributed to the irradiation, which resulte in the increment of thermal stability and dielectric constant, and also the decrement of the conductivity and dielectric loss of the GnPs-XNBR.

References

[1]  MALIAKAL A, KATZ H, COTTS P M, et al. Inorganic oxide core, polymer shell nanocomposites as a high K gate dielectric for flexible electronics applications[J]. Journal of the American Chemical Society, 2005, 127(42):14655-14662.
[2]  WANG B H, LIANG G Z, JIAO Y C, et al. Two-layer materials of polyethylene and a carbon nanotube/cyanate ester composite with high dielectric constant and extremely low dielectric loss[J]. Carbon, 2013, 54:224-233.
[3]  WU W, HUANG X Y, LI S T, et al. Novel three-dimensional zinc oxide superstructures for high dielectric constant polymer composites capable of withstanding high electric field[J]. Journal of Physical Chemistry C, 2012, 116(47):24887-24895.
[4]  YANG W H, YU S H, SUN R, et al. Electrical modulus analysis on the Ni/CCTO/PVDF system near the percolation threshold[J]. Journal of Physics D:Applied Physics, 2011, 44(47):475305-475312.
[5]  YANG J, YANG X L, PU Z J, et al. Controllable high dielectric permittivity of poly(arylene ether nitriles)/copper phthalocyanine functional nanohybrid films via chemical interaction[J]. Materials Letters, 2013, 93(7):199-202.
[6]  TIAN M, ZHANG J, ZHANG L Q, et al. Graphene encapsulated rubber latex composites with high dielectric constant, low dielectric loss and low percolation threshold[J]. Journal of Colloid and Interface Science, 2014, 430:249-256.
[7]  NAIR K P, THOMAS P, JOSEPH R. Latex stage blending of multiwalled carbon nanotube in carboxylated acrylonitrile butadiene rubber:Mechanical and electrical properties[J]. Materials and Design, 2012, 41:23-30.
[8]  WANG L L, NING N Y, ZHANG L Q, et al. Filler dispersion evolution of acrylonitrile-butadiene rubber/graphite nanocomposites during processing[J]. Composites Part A:Applied Science & Manufacturing, 2013, 47(1):135-142.
[9]  GHISLANDI M, TKALYA E, MARINHO B, et al. Electrical conductivities of carbon powder nanofillers and theirlatex-based polymer composites[J]. Composites Part A:Applied Science & Manufacturing, 2013, 53:145-151.
[10]  KANG H L, ZUO K H, WANG Z, et al. Using a green method to develop graphene oxide/elastomers nanocomposites with combination of high barrier and mechanical performance[J]. Composites Science and Technology, 2014, 92(3):1-8.
[11]  黄良, 朱朋莉, 梁先文, 等. 无机颗粒填充聚合物复合材料的介电性能研究[J]. 材料导报A, 2014, 28(10):11-20. HUANG L, ZHU P L, LIANG X W, et al. Study on the dielectric properties of inorganic particles filled polymer composites[J]. Materials Review A, 2014, 28(10):11-20 (in Chinese).
[12]  LIU Y G, HUANG Y D, ZHANG C W, et al. Vulcanization of polybutadiene latex induced by 60Co γ radiation[J]. Radiation Physics and Chemistry, 2008, 77(6):806-810.
[13]  中国国家标准化管理委员会. GB/T 18474-2001 交联聚乙烯(PE-X)管材与管件交联度的测试方法[S]. 北京:中国标准出版社, 2002. Standardization Administration of the People's Republic of China.GB/T 18474-2001 Pipes and fittings made of crosslinked polyethylene(PE-X) estimation the degree of crosslinking by determination of the gel content[S]. Beijing:China Standards Press, 2002 (in Chinese).
[14]  PAN Y Z, LI L, CHAN S H, et al. Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(3):419-426.
[15]  HANSEN N, ADAMS D O, FULLWOOD D T. Quantitative methods for correlating dispersion and electrical conductivity in conductor-polymer nanostrand composites[J]. Composites Part A:Applied Science and Manufacturing, 2012, 43(11):1939-1946.
[16]  王乐, 徐曼, 孙颖, 等. 纳米银/环氧树脂复合物的电阻和击穿特性研究[J]. 绝缘材料, 2006, 39(4):37-40. WANG Y, XU M, SUN Y, et al. Study on the resistance and electrical breakdown properties of nanosilver/epoxy resin composites[J]. Insulation Materials, 2006, 39(4):37-40 (in Chinese).
[17]  苏丽, 马寒冰, 杨莉, 等. 纳米银/环氧树脂复合材料的制备及其介电性能[J]. 化工进展, 2011, 30(8):1800-1804. SU L, MA H B, YANG L, et al. Preparation and dielectric properties of nanosilver/epoxy composites[J]. Chemical Industryand Engineering Progress, 2011, 30(8):1800-1804 (in Chinese).
[18]  王明路, 宁南英, 张静, 等. 氧化石墨烯核-壳杂化粒子/硅橡胶介电弹性体复合材料的制备与性能[J]. 复合材料学报, 2016, 33(6):1192-1197. WANG M L, NING N Y, ZHANG J, et al. Preparation and property of graphene oxide core-shell hybrid particles/silicone rubber dielectric elastomer composites[J]. Acta Materiae Compositae Sinica, 2016, 33(6):1192-1197 (in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133