|
- 2017
碳纤维-Ni/尼龙66复合材料的制备与性能表征
|
Abstract:
为制备低电阻率的尼龙66基复合材料,以碳纤维和镍粉(Ni)填充尼龙66制备碳纤维-Ni/尼龙66高导电复合材料。研究填料表面改性和含量对碳纤维-Ni/尼龙66复合材料导电性能和力学性能的影响。结果表明:KH550改性碳纤维和Ni有助于降低碳纤维-Ni/尼龙66复合材料的电阻率。碳纤维-Ni/尼龙66复合材料的电阻率随着碳纤维和Ni含量的增加而减小,且碳纤维和Ni填充尼龙66的导电逾渗阈值均为20 wt%,此时制备的碳纤维-Ni/尼龙66复合材料的电阻率为455 Ω·cm,熔融温度为202.2℃。碳纤维-Ni/尼龙66复合材料的弯曲强度和拉伸强度随着碳纤维或Ni含量的增加而先增大后减小。当Ni含量为20 wt%时,碳纤维-Ni/尼龙66复合材料的弯曲强度和拉伸强度在碳纤维含量分别为20 wt%和10 wt%时达到最大值,分别为98 MPa和70 MPa;当碳纤维含量为20 wt%时,碳纤维-Ni/尼龙66复合材料的弯曲强度和拉伸强度则在Ni含量为30 wt%和20 wt%时达到最大值,分别为120 MPa和67 MPa。 In this study, in order to obtain nylon 66-based composites with low electrical resistivity, carbon fiber-Ni/nylon 66 composites were prepared by a plastic extruder with carbon fiber (CF) and nickel powder (Ni) as the paddings, nylon 66 as the raw resin. The relationships of the surficial modification and the fractions of CF and Ni between the electrical resistivity and mechanical properties of CF-Ni/nylon 66 composites were studied. The results show that the modification by KH550 and increasing of CF and Ni are of advantage to decrease the electric resistivity of CF-Ni/nylon 66 composites. And the electrical percolation thresholds of CF and Ni both are 20 wt%. The electric resistivity of CF-Ni/nylon 66 composite is 455 Ω·cm at the percolation thresholds, and its melting point is 202.2℃. The flexural strength and tensile strength of CF-Ni/nylon 66 composites increase firstly and decrease lately with the increasing of CF and Ni. When the fraction of Ni is 20 wt%, the flexural strength of CF-Ni/nylon 66 composite reaches to the maximum 98 MPa as the fraction of CF is 20 wt%, and the tensile strength reaches to the maximum 70 MPa as the fraction is 10 wt%. When the fraction of CF is 20 wt%, the flexural strength of CF-Ni/nylon 66 composite reaches to the maximum 120 MPa as the fraction of Ni is 30 wt%, and the tensile strength reaches to the maximum 67 MPa as the fraction is 20 wt%. 深圳市知识创新计划(JCYJ20130402161506238)
[1] | DENG H, LIN L, JI M, et al. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials[J]. Progress in Polymer Science, 2014, 39(4):627-655. |
[2] | DU Y, SHEN S Z, CAI K, et al. Research progress on polymer-inorganic thermoelectric nanocomposite materials[J]. Progress in Polymer Science, 2012, 37(6):820-841. |
[3] | BHADRA S, KHASTGIR D, SINGHA N K, et al. Progress in preparation, processing and applications of polyaniline[J]. Progress in Polymer Science, 2009, 34(8):783-810. |
[4] | 汪菊英, 张兴华, 曹有名. 导电高分子聚吡咯纳米复合材料的研究进展[J]. 塑料, 2005, 29(06):84-91. WANG J Y, ZHANG X H, CAO Y M. Research progress in conductive polypyrrole nanocomposite materials[J]. Plastics, 2005, 29(06):84-91 (in Chinese). |
[5] | HOLDCROFT S. Patterning π-conjugated polymers[J]. Advanced Materials, 2001, 13(23):1753-1765. |
[6] | 马利, 汤琪. 导电高分子材料聚苯胺的研究进展[J]. 重庆大学学报(自然科学版), 2002, 25(02):124-127. MA L, TANG Q. Research development of conductive polymer-PAN[J]. Journal of Chongqing University (Natural Science Edition), 2002, 25(02):124-127 (in Chinese). |
[7] | 马玉亮. 功能性质子酸掺杂聚苯胺及聚苯胺/尼龙66复合材料研究[D]. 青岛:青岛科技大学, 2007. MA Y L. Study on functional protonic acid doping PAN and PAN/nylon 66 composites[D]. Qingdao:Qingdao University of Science and Technology, 2007 (in Chinese). |
[8] | 徐任信, 王钧, 鲁学林, 等. 短切碳纤维导电复合材料渗流和PTC行为的唯象分析[J]. 复合材料学报, 2009, 29(04):41-46. XU R, WANG J, LU X L, et al. Phenomenal analysis of percolation and PTC behavior in conducting composite with short carbon fiber[J]. Acta Materiae Compositae Sinica, 2008, 25(04):96-100 (in Chinese). |
[9] | SNOOK G A, KAO P, BEST A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196(1):1-12. |
[10] | 郑国禹. 导电高分子在隐身材料中的应用[J]. 工程塑料应用, 2007, 35(02):70-73. ZHEN G Y. Application of conducting macromolecule in camouflage materials[J]. Engineering Plastics Application, 2007, 35(02):70-73 (in Chinese). |
[11] | WANG Y, LI T, ZHAO L, et al. Research progress on nanostructured radar absorbing materials[J]. Energy and Power Engineering, 2011, 3(04):580. |
[12] | 潘任行. 碳纤维表面修饰及增强尼龙66复合材料的研究[D]. 上海:东华大学, 2014. PAN R X. Study of surface modification and carbon fiber and reinforcement of nylon 66[D]. Shanghai:Donghua University, 2014 (in Chinese). |
[13] | 单燕飞. 碳纤维/镍粉/聚丙烯电磁屏蔽复合材料的制备及其性能研究[D]. 广州:华南理工大学, 2012. SHAN Y F. Research on preparation and properties of carbon fiber/nickel/PP electromagnetic shielding composites[D]. Guangzhou:South China University of Technology, 2012 (in Chinese). |
[14] | TSANG K Y, DU Q D L, BATES P J. Fatigue properties of vibration-welded nylon 6 and nylon 66 reinforced with glass fibres[J]. Composites Part B:Engineering, 2008, 39(2):396-404. |
[15] | XU X. Cellulose fiber reinforced nylon 6 or nylon 66 composites[M]. ProQuest, 2008. |
[16] | QIU L, YANG Y, XU L, et al. Influence of surface modification of carbon nanotube on microstructures and properties of polyamide 66/multiwalled carbon nanotube composites[J]. Polymer Composites, 2013, 34(5):656-664. |
[17] | 贺丽丽, 叶明泉, 韩爱军. 填充复合型导电高分子材料研究进展[J]. 材料导报, 2008, 22(S2):294-296+300. HE L L, YE M Q, HAN A J. Research progress of filling conductive composite materials[J]. Materials Review, 2008, 22(S2):294-296+300 (in Chinese). |
[18] | 樊玮, 张超, 刘天西. 石墨烯/聚合物复合材料的研究进展[J]. 复合材料学报, 2013, 30(01):14-21. FAN W, ZHANG C, LIU T X. Recent progress in graphene/polymer composites[J]. Acta Materiae Compositae Sinica, 2013, 30(01):14-21 (in Chinese). |
[19] | 杨波, 陈光顺, 李姜, 等. 多壁碳纳米管增强炭黑/聚丙烯导电复合材料导电行为[J]. 复合材料学报, 2009, 29(04):41-46. YANG B, CHEN G S, LI J, et al. Multi-walled carbon nanotubes enhanced conductive behaviors of CB/PP electrical conductive composites[J]. Acta Materiae Compositae Sinica, 2009, 29(04):41-46 (in Chinese). |