全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

复合材料固化相关黏弹性性能演化及残余应力分析
Analysis on the process dependent viscoelastic properties and residual stresses of composites during cure

DOI: 10.13801/j.cnki.fhclxb.20160823.002

Keywords: 聚合物基复合材料,固化,黏弹性,数值分析,残余应力
polymer-matrix composites
,cure,viscoelasticity,numerical analysis,residual stress

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过对复合材料固化度和温度相关黏弹性本构方程的分析,定义一个能综合反映固化度和温度等对复合材料黏弹性性能影响的无量纲参数Dem。当参数Dem都大于102时,复合材料基体处于流动状态;当参数Dem都小于10-2时,复合材料为弹性状态;仅当部分参数Dem小于102而大于10-2时,复合材料处于黏弹性状态。以AS4纤维/3501-6树脂复合材料为例,基于对其参数Dem在典型固化工艺过程中的演化,研究该复合材料黏弹性性能的发展过程,发现基于参数Dem分析得到的凝胶点时间与实验结果一致。根据复合材料黏弹性性能对残余应力发展的影响,将复合材料残余应力计算分为流动阶段和黏弹性阶段,并建立了相应的状态相关黏弹性本构模型。最后通过与原始模型预测结果的比较验证了提出的本构模型,表明本文提出的计算方法与原始黏弹性本构模型计算结果一致,但大大降低了计算所需的时间和存储空间。 Based on the analysis of the degree of cure and temperature dependent viscoelastic constitutive model of composite, the dimensionless parameters defined as Dem were proposed to characterize the viscoelasticity of composite in this paper. The parameters Dem can comprehensively reflect the effects of the degree of cure and temperature on the viscoelasticity of a composite during cure. When all of the values of Dem are higher than 102, the composite matrix is in a flow state. When all of the values of Dem are less than 10-2, the composite is in an elastic state. Only when one or more Dem lie between 102 and 10-2, the composite is in viscoelastic state. The behavior of the AS4 fiber/3501-6 polymer matrix composite was used as example, the development of the viscoelasticity of the composite was analyzed according to the evolution of the parameters Dem during the typical curing cycle. The result shows that the gelation time determined by the parameters Dem is consistent with that obtained by experimental tests. According to the effect of viscoelasticity of composite on the accumulation of residual stress, the analysis procedure on the residual stress was divided into the flow stage and the viscoelasticity stage, and the cure state dependent viscoelastic constitutive models were put forward. The proposed models were verified by comparing their predictions with those of the original constitutive model. The results show that the residual stresses predicted by the proposed models are consistent with those predicted by the original model, but the computing time and storage space required by the proposed models are greatly reduced. 国家自然科学基金(11202154);中央高校基本科研业务费专项资金(WUT:2016IB002)

References

[1]  马云荣, 贺继林, 李栋, 等. 树脂基复合材料曲面结构件固化变形数值模拟[J]. 复合材料学报, 2015, 32(3):874-880. MA Y R, HE J L, LI D, et al. Numerical simulation of curing deformation of resin matrix composite curved structure[J]. Acta Materiae Compositae Sinica, 2015, 32(3):874-880 (in Chinese).
[2]  郭章新, 韩小平, 李金强, 等. 纤维缠绕复合材料固化过程残余应力-应变的三维数值模拟[J]. 复合材料学报, 2014, 31(4):1007-1012. GUO Z X, HAN X P, LI J Q, et al. Three-dimensional numerical simulation of residual stress-strain for filament-wound composites during curing precess[J]. Acta Materiae Compo-sitae Sinica, 2014, 31(4):1007-1012 (in Chinese).
[3]  JOHNSTON A, VAZIRI R. A plane strain model for process-induced deformation of laminated composite structures[J]. Journal of Composite Materials, 2001, 35(16):1435-1469.
[4]  KIM Y K. Process-induced viscoelastic residual stress analysis of graphite-epoxy composite structures[D]. University of Illinois at Urbana Champaign, 1996.
[5]  LI J, YAO X F, LIU Y H, et al. Thermo-viscoelastic analysis of the integrated T-shaped composite structures[J]. Composites Science and Technology, 2010, 70(10):1497-1503.
[6]  ZHU Q, GEUBELLE P H, LI M, et al. Dimensional accuracy of thermoset composites:Simulation of process-induced residual stresses[J]. Journal of Composite Materials, 2001, 35(24):2171-2205.
[7]  ZOBEIRY N, VAZIRI R, POURSARTIP A H. Computationally efficient pseudo-viscoelastic models for evaluation of residual stresses in thermoset polymer composites during cure[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(2):247-256.
[8]  郭兆璞, 陈浩然, 息志臣. 复合材料层合板的固化残余应力和变形分析[J]. 复合材料学报, 1996, 13(1):105-110. GUO Z P, CHEN H R, XI Z C. Residual stress and deformation of composite laminates during curing process[J]. Acta Materiae Compositae Sinica, 1996, 13(1):105-110 (in Chinese).
[9]  YI S, CHIAN K S, HILTON H H. Nonlinear viscoelastic finite element analyses of thermosetting polymeric composites during cool-down after curing[J]. Journal of Composite Materials, 2002, 36(1):3-17.
[10]  李君, 姚学锋, 刘应华, 等. 复合材料T 型整体化结构固化翘曲变形模拟[J]. 复合材料学报, 2009, 26(1):156-161. LI J, YAO X F, LIU Y H, et al. Simulation on curing war-page deformation of composite T-shaped integrated structure[J]. Acta Materiae Compositae Sinica, 2009, 26(1):156-161 (in Chinese).
[11]  陈浩然, 杨正林, 唐立民. 复合材料层合板固化过程的数值模拟[J]. 应用力学学报, 1998, 15(3):30-36. CHEN H R, YANG Z L, TANG LM. Numerical simulation on the cure process of composite laminates[J]. Chinese Journal of Applied Mechanics, 1998, 15(3):30-36 (in Chinese).
[12]  WHITE S R, HAHN H T. Process modeling of composite materials:Residual stress development during cure Ⅱ:Experimental validation[J]. Journal of Composite Materials, 1992, 26(16):2423-2453.
[13]  PRASATYA P, MCKENNA G B, SIMON S L. A viscoelastic model for predicting isotropic residual stresses in thermosetting materials:Effects of processing parameters[J]. Journal of Composite Materials, 2001, 35(10):826-848.
[14]  WHITE S R, KIM Y K. Process-induced residual stress analysis of AS4/3501-6 composite material[J]. Mechanics of Composite Materials and Structures, 1998, 5(2):153-186.
[15]  KIM Y K, WHITE S R. Viscoelastic analysis of processing-induced residual stresses in thick composite laminates[J]. Mechanics of Composite Materials and Structures, 1997, 4(4):361-387.
[16]  KIM Y K, WHITE S R. Process-induced stress relaxation analysis of AS4/3501-6 laminate[J]. Journal of Reinforced Plastics and Composites, 1997, 16:2-16.
[17]  BRAUNER C, BAUER S, HERRMANN A S. Analysing process-induced deformation and stresses using a simulated manufacturing process for composite multispar flaps[J]. Journal of Composite Materials, 2015, 49(4):387-402.
[18]  CLIFFORD S, JANSSON N, YU W, et al. Thermoviscoelastic anisotropic analysis of process induced residual stresses and dimensional stability in real polymer matrix composite components[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(4):538-545.
[19]  SVANBERG J M, HOLMBERG J A. Prediction of shape distortions Part I. FE-implementation of a path dependent constitutive model[J]. Composites Part A:Applied Science and Manufacturing, 2004, 35(6):711-721.
[20]  SVANBERG J M, HOLMBERG J A. Prediction of shape distortions Part Ⅱ. Experimental validation and analysis of boundary conditions[J]. Composites Part A:Applied Science and Manufacturing, 2004, 35(6):723-734.
[21]  REINER M. The deborah number[J]. Physics Today, 1964, 17(1):62.
[22]  KIM K S., HAHN H T. Residual stress development during processing of graphite/epoxy composites[J]. Composites Science and Technology, 1989, 36(2):121-132.
[23]  陈晓静. 复合材料构件固化成型的变形预测与补偿[D]. 南京:南京航空航天大学, 2011. CHEN X J. Deformation prediction and compensation for composite components during curing process[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese).
[24]  庞杰. 复合材料结构固化变形分析及其控制[D]. 南京:南京航空航天大学, 2010. PANG J. Analysis and control on cured deformation of composite structure[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010 (in Chinese).
[25]  BOGETTI T A, GILLESPIE J J W. Process-induced stress and deformation in thick-section thermoset composite laminates[J]. Journal of Composite Materials, 1992, 26(5):626-660.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133