全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

内埋中空纤维法制备复合材料孔隙率标准试块的超声衰减特性
Ultrasonic attenuation characteristics of composites void contents standard test block with embedded hollow fiber

DOI: 10.13801/j.cnki.fhclxb.20160330.001

Keywords: 复合材料,孔隙率,超声检测,涤纶长丝,标准试块
composite
,porosity,ultrasonic inspection,polyester filament,standard test block

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用50D中空涤纶长丝埋入复合材料,模拟复合材料的孔隙,制备孔隙率标准试块。通过制备三种厚度(1.5,3.0和5.0mm)和五种孔隙率(0~5.76%)的碳纤维增强环氧树脂复合材料,采用超声C扫描测定不同孔隙率下复合材料的超声衰减,并和波音公司的标准试块进行了对比。研究了涤纶排列密度和在厚度方向上的排列位置对复合材料超声衰减的影响。结果表明,制备的标准试块和波音公司标准试块具有良好的一致性,用涤纶中空纤维模拟复合材料的孔隙率是可行的;随着涤纶排列密度的增加,孔隙率增加,超声衰减增加;在孔隙率不变的情况下,涤纶分布在不同的厚度位置上时,其复合材料的超声衰减基本一致。 50D hollow polyester filaments were used to be embedded the composite materials simulating the porosity of the composites, which was used as standard test blocks. Carbon fiber reinforced epoxy resin composites were prepared with three kinds of thicknesses(1.5, 3.0 and 5.0 mm) and five kinds of void contents (0-5.76%). Ultrasonic C-scan was adopted to measure the ultrasonic attenuation of the composites with different void contents. Testing results were compared with the results using Boeing Co.'s standard test block. The effect of arrangement density and position of polyester filament on ultrasonic attenuation of the composites were studied. The results show that there is a good consistency between the standard test block made in this paper and Boeing Co. standard test block, and using hollow polyester filament is feasible to simulate the porosity of composites. The void content and ultrasonic attenuation increase with the arrangement density. The ultrasonic attenuation keeps stable when the position of polyester filament in thickness direction changes. 国家商用飞机制造工程技术研究中心创新基金(SAMC14-JS-15-048;SAMC14-JS-15-049)

References

[1]  PUTKIS O, DALTON R P, CROXFORD A J. The anisotropic propagation of ultrasonic guided waves in composite materials and implications for practical applications[J]. Ultrasonics, 2016, 65:390-399.
[2]  刘玲, 路明坤, 张博明, 等. 孔隙率对碳纤维复合材料超声衰减系数和力学性能的影响[J]. 复合材料学报, 2004, 21(5):116-121. LIU L, LU M K, ZHANG B M, et al. Effects of porosity on the ultrasonic absorption coefficient and mechanical strength of carbon/epoxy composites[J]. Acta Materiae Compositae Sinica, 2004, 21(5):116-121 (in Chinese).
[3]  刘继忠, 周晓军, 蒋志峰. 碳纤维复合材料孔隙率超声衰减测试研究[J]. 材料科学与工艺, 2007, 15(2):261-263. LIU J Z, ZHOU X J, JIANG Z F. Porosity test in carbon composites based on a new ultrasonic attenuation method[J]. Materials Science & Technology, 2007, 15(2):261-263 (in Chinese).
[4]  马雯, 刘福顺. 玻璃纤维复合材料孔隙率对超声衰减系数及力学性能的影响[J]. 复合材料学报, 2012, 29(5):69-75. MA W, LIU F S. Effect of porosity on the attenuation coefficient and mechanical properties of glass fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 2012, 29(5):69-75 (in Chinese).
[5]  何梅洪, 杨涛, 张斌, 等. 复合材料超声检测复合缺陷多层成像实验分析[J]. 宇航材料工艺, 2015, 45(5):80-84. HE M H, YANG T, ZHANG B, et al. Experiment analysis of multi imaging by ultrasonic testing of complex defects in composite material[J]. Aerospace Materials & Technology, 2015, 45(5):80-84 (in Chinese).
[6]  BEN B S, BEN B A, KWEON S H, et al. Ultrasonic based method for damage identification in composite materials[J]. International Journal of Mechanics and Materials in Design, 2012, 8(4):297-309.
[7]  REVEL G M, PANDARESE G, CAVUTO A. Advanced ultrasonic non-destructive testing for damage detection on thick and curved composite elements for constructions[J]. Journal of Sandwich Structures and Materials, 2013, 15(1):5-24.
[8]  KI-BOK K, DAVID K, DANIEL J B. Estimation of porosity content of composite materials by applying discrete wavelet transform to ultrasonic backscattered signal[J]. Ndt & E International, 2013, 56:10-16.
[9]  PELIVANOV L, O'DONNELL M. Imaging of porosity in fiber-reinforced composites with a fiber-optic pump-probe laser-ultrasound system[J]. Composites:Part A, 2015, 79:43-51.
[10]  林莉, 李喜梦. 超声波频谱分析技术及其应用[M]. 北京:机械工业出版社, 2009, 102-104. LIN L, LI X M. Ultrasonic spectrum analysis technology and application[M]. Beijing:China Machine Press, 2009, 102-104 (in Chinese).
[11]  STONE D E, CLARKE B. Ultrasonic attenuation a measure of void content in carbon fiber reinforced plastics[J]. Non-destructive Testing, 1975, 8(3):137-145.
[12]  KAS Y Q, KAYNAK C. Ultrasonic (C-scan) and microsco-pic evaluation of resin transfer molded epoxy composite plates[J]. Polymer Testing, 2005, 24(1):114-120.
[13]  LIU L, ZHANG B M, WANG D F, et al. Effects of cure cycles on void content and mechanical properties of composite laminates[J]. Composite Structures, 2006, 73 (3):303-306.
[14]  TOLDY A, SZONLNOKI B, MAROSI G. Flame retardancy of fiber-reinforced epoxy resin composites for aerospace application[J]. Polymer Degradation and Stability, 2011, 96(3):371-376.
[15]  于雅琳, 叶金蕊, 刘奎, 等. 含孔隙率复合材料超声衰减分析的细观有限元模型[J]. 复合材料学报, 2014, 31(1):171-178. YU Y L, YE J R, LIU K, et al. A mesoscale ultrasonic attenuation finite element model of void containing composites[J]. Acta Materiae Compositae Sinica, 2014, 31(1):171-178 (in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133