全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

蝶翅精细分级结构纳米Ag-Au/蝶翅复合材料的可控制备
Controllable synthesis of nano Ag-Au/butterfly wings composites with mimicking fine hierarchical structure of butterfly wings

DOI: 10.13801/j.cnki.fhclxb.20180109.001

Keywords: 蝶翅,自然生物模板,Ag-Au,精细分级结构,可控制备,复合材料
butterfly wings
,nature biotemplate,Ag-Au,hierarchical structure,controllable synthesis,composites

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过调控蝶翅的分步浸渍,在蝶翅模板上原位还原生成不同形状的纳米Ag-Au颗粒,并嵌入蝶翅精细分级结构得到纳米Ag-Au/蝶翅复合材料。在Ag-Au/蝶翅复合材料形成过程中,蝶翅既提供了构筑精细分级结构纳米复合材料的基体模板,又通过活性基团(如:—CONH—、—OH)参与控制Ag-Au颗粒的还原。因此,通过调控浸渍过程的温度和浸渍方式等工艺参数,得到30~50 nm的实心球状、50~80 nm空心球、不规则螺母形等不同形状的纳米Ag-Au粒子,这些纳米粒子原位沉积并均匀镶嵌在蝶翅基体上,不仅实现了对蝶翅的精细分级结构的复制,而且调控了所生成纳米Ag-Au粒子的形状。这种基于自然生物模板进行液相浸渍的制备方法为有效制备具有精细分级结构和多组分功能纳米结构的复合材料提供了重要借鉴方法。 A nature bio-template strategy was implemented to synthesize nano Ag-Au particles and display ordered arrays on butterfly wings. By a convenient procedure, the butterfly wings were immersed in ethylenediamine to increase the reactive sites on the chitin component (e.g. -CONH-and -OH functional groups), in which nano Ag particles can in situ come into being and further serve as the active sites for succedent Au deposition. The 30-50 nm solid spherical, 50-80 nm hollow spherical, irregular Ag-Au particles are loaded both on the wings' surface layer and inside the ordered array nanostructure homogeneously. This work not only replicates the fine structure of the butterfly wing, but also regulates the shape of nano Ag-Au particles. The preparation method of liquid phase impregnation based on natural biological templates provides an important reference for the effective preparation of the Ag-Au/butterfly wing composites with fine graded structure and multi-component functional nanostructures. 国家自然科学基金(51572169;51672175);上海科学技术委员会(15ZR1422400;16520710900)

References

[1]  JANG H, KIM Y K, HUH H, et al. Facile synthesis and intraparticle self-catalytic oxidation of dextran-coated hollow Au-Ag nanoshell and its application for chemo-thermotherapy[J]. ACS Nano, 2014, 8:467-475.
[2]  YI Z, CHEN S, CHEN Y, et al. Preparation of dendritic Ag/Au bimetallic nanostructures and their application in surface-enhanced Raman scattering[J]. Thin Solid Films, 2012, 520(7):2701-2707.
[3]  HALAS N J, LAL S, CHANG W S, et al. Plasmons in strongly coupled metallic nanostructures[J]. Chemical Reviews, 2011, 111(6):3913-3961.
[4]  HENZIE J, LEE J, LEE MH, et al. Nanofabrication of plasmonic structures[J]. Annual Review of Physical Chemistry, 2009, 60:147-165.
[5]  WILEY B, SUN Y, XIA Y. Synthesis of silver nanostructures with controlled shapes and properties[J]. Accounts of Chemical Research, 2007, 40(10):1067-1076.
[6]  LIU J, CHANG M J, GOU X C, et al. One-step synthesis of antibody-stabilized aqueous colloids of noble metal nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012, 404:112-118.
[7]  ZHANG L, HUANG C Z, LI Y F, et al. Morphology control and structural characterization of Au crystals:From twinned tabular crystals and single-crystalline nanoplates to multitwinned decahedra[J]. American Chemical Society, 2009, 9(7):3211-3217.
[8]  ZHANG T, ZHOU Y, BU X, et al. Bio-inspired fabrication of hierarchically porous Mg-Al composites for enhanced BSA adsorption properties[J]. Microporous and Mesoporous Materials, 2014, 188:37-45.
[9]  TAN Y, GU J, ZANG X, et al. Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures[J]. Angewandte Chemie, 2011, 50(36):8307-8311.
[10]  ZHANG C, WANG J, HU R, et al. Synthesis and gas sensing properties of porous hierarchical SnO2 by grapefruit exocarp biotemplate[J]. Sensors and Actuators B:Chemical, 2016, 222:1134-1143.
[11]  WANG N, LIU Q, KANG D, et al. Facile self-crosslinking synthesis of 3D nanoporous Co3O4/carbon hybrid electrode materials for supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(25):16035-16044.
[12]  DECHKRONG P, JIWAJINDA S, DOKCHAN P, et al. Fine structure of wing scales of butterflies, Euploea mulciber and troides aeacus[J]. Journal of Structural Biology, 2011, 176(1):75-82.
[13]  WANG J, ZHANG L, HUANG Y, et al. Hollow Au-Ag nanoparticles labeled immunochromatography strip for highly sensitive detection of clenbuterol[J]. Scientific Reports, 2017, 7:41419.
[14]  VILLA A, DIMITRATOS N, CHAN-THAW C E, et al. Characterisation of gold catalysts[J]. Chemical Society Reviews, 2016, 45(18):4953-4994.
[15]  MULVIHILL M J, LING X Y, HENZIE J, et al. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS[J]. Journal of the American Chemical Society, 2010, 132(1):268-274.
[16]  YUN J, HUANG S H, JANG J. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells[J]. ACS Applied Materials & Interfaces, 2015, 7(3):2055-2063.
[17]  MAHMOUD M A, O'NEIL D, EL-SAYED M A. Hollow and solid metallic nanoparticles in sensing and in nanocatalysis[J]. Chemistry of Materials, 2014, 26(1):44-58.
[18]  SKRABALAK S E, CHEN J, SUN Y, et al. Gold nanocages:Synthesis, properties and applications[J]. Accounts of Chemical Research, 2008, 41(12):1587-1595.
[19]  LUNA-BáRCENAS G, GONZALEZ-CAMPOS B, ELIZALDE-PE?A E A, et al. FEMO modelling of optical properties of natural biopolymers chitin and chitosan[J]. Physica Status Solidi, 2008, 5(12):3736-3739.
[20]  CHEN J, MCLELLAN J M, SIEKKINEN A, et al. Facile synthesis of gold-silver nanocages with controllable pores on the surface[J]. Journal of the American Chemical Society, 2006, 128(46):14776-14777.
[21]  ALIVISATOS A P. Naturally aligned nanocrystals[J]. Science, 2000, 289(5480):736-737.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133