全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于微波等离子体方法生长的纳米碳对碳纤维/环氧树脂复合材料界面性能的影响
Effect of nanocarbon on interfacial properties of carbon fiber/epoxy composites based on microwave plasma enhanced chemical vapor deposition

DOI: 10.13801/j.cnki.fhclxb.20180409.003

Keywords: 复合材料,界面性能,碳纳米管,无序碳,微观结构,微波气相等离子体
composites
,interfacial properties,carbon nanotubes,disordered carbon,microstructure,microwave plasma enhanced chemical vapor deposition

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高复合材料的界面性能,采用微波等离子体(MPECVD)方法,通过控制工艺参数,在碳纤维(CF)表面生长结构形貌各异的纳米碳,将其引入CF/环氧树脂(EP)复合材料界面微区。采用FESEM研究了不同MPECVD工艺参数对沉积纳米碳结构形貌的影响,采用单纤维破碎实验研究了纳米碳形貌对CF/EP复合材料的界面性能影响,探讨了纳米碳-CF/EP复合材料界面微观结构与其界面性能之间的关系。结果表明:随着MPECVD沉积功率的变化,沉积的纳米碳结构形貌变化较大。当沉积功率为700 W时,制备得到的多尺度纳米碳-CF/EP复合材料界面性能最高,界面剪切强度(IFSS)达到112.38 MPa,提高了118.85%。 In order to improve the interface properties of composites, nanocarbons with different morphologies were deposited onto the surface of carbon fiber (CF) by controlling the process parameters using microwave plasma enhanced chemical vapor deposition (MPECVD) method. And then the multi-scale reinforcement was introduced into the interface layer of the CF/epoxy (EP) composites. Effects of different MPECVD technological parameters on the structural morphology of nanocarbon were researched by FESEM. The morphologies of nanocarbon on the interfacial shear strength (IFSS) were also studied by single fiber fragmentation test. And then, the relationship between interfacial properties and the micro-structure of interface region of nanocarbon-CF/EP was discussed. The results show that the morphologies of nanocarbon are changed significantly with the increase in deposition power. When the deposited power reaches 700 W, IFSS of nanocarbon-CF/EP composite increases by 118.85%, reaching 112.38 MPa. 国家自然科学基金(11575126)

References

[1]  SU F, ZHANG Z, WANG K, et al. Tribological and mechanical properties of the composites made of carbon fabrics modified with various methods[J]. Composites Part A:Applied Science & Manufacturing, 2005, 36(12):1601-1607.
[2]  RONG H, DAHMEN K H, GARMESTANI H, et al. Comparison of chemical vapor deposition and chemical grafting for improving the mechanical properties of carbon fiber/epoxy composites with multi-wall carbon nanotubes[J]. Journal of Materials Science, 2013, 48(14):4834-4842.
[3]  LIU P F, CHU J K, LIU Y L, et al. A study on the failure mechanisms of carbon fiber/epoxy composite laminates using acoustic emission[J]. Materials & Design, 2012, 37:228-235.
[4]  DVIR H, JOPP J, GOTTLIEB M. Estimation of polymer-surface interfacial interaction strength by a contact AFM technique[J]. Journal of Colloid and Interface Science, 2006, 304(1):58-66.
[5]  胡小雨, 蒋秋冉, 魏毅, 等. 碳纤维-氧化石墨烯/环氧树脂复合材料的制备及表征[J]. 复合材料学报, 2018, 35(7):1691-1699. HU X Y, JIANG Q R, WEI Y, et al. Preparation and characterization of carbon fiber-graphene oxide/epoxy composites[J]. Acta Materiae Compositae Sinica, 2018, 35(7):1691-1699(in Chinese).
[6]  李长青, 董怀斌. 电场诱导多壁碳纳米管有序排列对多壁碳纳米管/环氧树脂复合材料性能的影响[J]. 复合材料学报, 2018, 35(9):2387-2396. LI C Q, DONG H B. Effect of aligned MWCNTs induced by electric field on properties of MWCNTs/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2018, 35(9):2387-2396(in Chinese).
[7]  ISLAM M S, DENG Y, TONG L, et al. Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability:Towards next generation aerospace composites and energy storage applications[J]. Carbon, 2016, 96:701-710.
[8]  WU G, WANG Y, LI D, et al. Direct electrochemical attachment of carbon nanotubes to carbon fiber surfaces[J]. Carbon, 2011, 49(6):2152-2155.
[9]  SUI X, SHI J, YAO H, et al. Interfacial and fatigue-resis-tant synergetic enhancement of carbon fiber/epoxy hierarchical composites via an electrophoresis deposited carbon nanotube-toughened transition layer[J]. Composites Part A:Applied Science and Manufacturing, 2017, 92:133-134.
[10]  LEE J, LEE T, PARK S, et al. Low-temperature synthesis of thin graphite sheets using plasma-assisted thermal chemical vapor deposition system[J]. Materials Letters, 2011, 65(7):1127-1130.
[11]  PENG L, FENG Y, ZHANG P, et al. Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers[J]. Carbon, 2011, 49(14):4665-4673.
[12]  QIAN H, BISMARCK A, GREENHALGH E S, et al. Carbon nanotube grafted carbon fibres:A study of wetting and fibrefragmentation[J]. Composites Part A:Applied Science & Manufacturing, 2010, 41(9):1107-1114.
[13]  SAGER R J, KLEIN P, LAGOUDAS D C, et al. Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix[J]. Composites Science & Technology, 2009, 69(7):898-904.
[14]  LI M, GU Y, LIU Y, et al. Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers[J]. Carbon, 2013, 52(2):109-121.
[15]  孟松鹤, 阚晋, 许承海, 等. 微结构对碳/碳复合材料界面性能的影响[J]. 复合材料学报, 2010, 27(1):129-132. MENG S H, KAN J, XU C H, et al. Relations between microstructure and mechanical properties of fiber-matrix interfaces in C/C composite[J]. Acta Materiae Composite Sinica, 2010, 27(1):129-132(in Chinese).
[16]  HATAKEYAMA R, KANEKO T, KATO T, et al. Plasma-synthesized single-walled carbon nanotubes and their applications[J]. Journal of Physics D:Applied Physics, 2011, 44(17):228-236.
[17]  DRESSELHAUS M, DRESSELHAUSM G, JORIO A. Raman spectroscopy of carbon nanotubes in 1997 and 2007[J]. Journal of Physical Chemistry C, 2007, 111(48):17887-17893.
[18]  HUSSAIN S, AMADE R, BERTRAN E, et al. Growth and plasma functionalization of carbon nanotubes[J]. Journal of Cluster Science, 2015, 26(2):315-336.
[19]  ZHAO F, TAKEA N. Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass fiber/epoxy composites part Ⅰ:Experiment results[J]. Composites Part A:Applied Science & Manufacturing, 2000, 31(11):1203-1214.
[20]  HE Y, TIAN G, PAN M, et al. Impact evaluation in carbon fiber reinforced plastic (CFRP) laminates using eddy current pulsed thermography[J]. Composite Structures, 2014, 109:1-7.
[21]  COLEMAN J N, KHAN U, BLAU W J, et al. Small but strong:A review of the mechanical properties of carbon nanotube-polymer composites[J]. Carbon, 2006, 44(9):1624-1652.
[22]  LI W, DICHIARA A, BAI J. Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites[J]. Composites Science and Technology, 2013, 74:221-227.
[23]  ACHABY M E, QAISS A. Processing and properties of polyethylene reinforced by graphenenanosheets and carbon nanotubes[J]. Materials & Design, 2013, 44:81-89.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133