|
- 2018
汉麻纤维表面改性对其增强聚丙烯复合材料性能及挥发性有机化合物释放影响
|
Abstract:
通过非织造-热压工艺制备了汉麻纤维增强聚丙烯(HF/PP)复合材料。采用热重-质谱联用仪(TG-MS)研究了HF/PP复合材料的挥发性有机化合物(Volatile organic compounds,VOC)释放来源及汉麻经聚乙烯醇(PVA)改性和尿素改性对HF/PP复合材料VOC释放的影响,同时研究了两种改性方法对HF/PP复合材料热学性能和力学性能的影响。结果表明:HF/PP复合材料中的VOC主要来源于汉麻纤维,改性后的HF/PP复合材料力学性能相比未处理的均有不同程度的提升,尿素改性后,HF/PP复合材料的拉伸强度和弯曲强度达到最大值,较未处理时分别提升了19.32%和15.04%。PVA改性后,HF/PP复合材料的拉伸模量、弯曲模量和剪切强度达到最大值,相比未改性时分别提升了17.72%、15.94%和24.72%。改性后HF/PP复合材料热稳定性能和VOC释放相较未处理时均得到了优化:PVA改性后HF/PP复合材料热稳定性最优,三个阶段总活化能较未处理时提高了121.99%,达到了392.56 kJ·mol-1,并且HF/PP复合材料热稳定性与界面性能密切相关;尿素及PVA改性后HF/PP复合材料的总VOC(TVOC)释放量相较未处理时均降低。 Hemp fiber/polypropylene(HF/PP) composites were prepared via non-woven and compressing technology. The volatile organic compounds(VOC) emission source of HF/PP composites was studied and TG-mass spectrometry (TG-MS) was used to study the effect of PVA and urea modification on the VOC emission of HF/PP composites. At the same time the effect of the above methods on the mechanical and thermal properties of HF/PP composites were also investigated. The results reveal that the VOC emission of HF/PP composites mainly comes from hemp fiber. Compared with the untreated composite, the mechanical properties of the modified HF/PP composites are improved. The tensile strength and flexural strength of the composite reach the maximum value after urea modification which increase by 19.32% and 15.04% compared with untreated. The tensile modulus, flexural modulus and impact strength of the HF/PP composite reach the maximum value after PVA modification which increase by 17.72%, 15.94% and 24.72% compared with untreated. The thermal stability and VOC emission of the modified HF/PP composites are optimized after modification. The HF/PP composite attains the optimal thermal stability after PVA modification, and the total activation energy increases by 121.99% compared with untreated, and reaches to 392.56 kJ·mol-1. The thermal stability of HF/PP composites is closely related to its interfacial properties. The total VOC cumulative emission of the modified HF/PP composites decreases compared with untreated, and the urea modified composite exhibits the best effect. 天津市科技特派员项目(16JCTPJC44900)
[1] | SENNECA O, CIARAVOLO S, NUNZIATA A. Composition of the gaseous products of pyrolysis of tobacco under inert and oxidative conditions[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79(1):234-243. |
[2] | American Society for Testing Materials International. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials:ASTM 790-03[S]. New York:ASTM International, 2009. |
[3] | 左金琼. 热分析中活化能的求解与分析[D]. 南京:南京理工大学, 2006. ZUO Jinqiong. Solution and analysis of activation energy in thermal analysis[D]. Nanjing:Nanjing University of Science and Technology, 2006(in Chinese). |
[4] | DUAN H, QIU T, GUO L, et al. The microcapsule-type formaldehyde scavenger:The preparation and the application in urea-formaldehyde adhesives[J]. Journal of Hazardous Materials, 2015, 293:46-53. |
[5] | GENNARO G D, LOIOTILE A D, FRACCHIOLLA R, et al. Temporal variation of VOC emission from solvent and water based wood stains[J]. Atmospheric Environment, 2015, 115:53-61. |
[6] | YUAN H L, LITTLE J C, MARAND E, et al. Using fugacity to predict volatile emissions from layered materials with a clay/polymer diffusion barrier[J]. Atmos Environ, 2007, 41(40):9300-9308. |
[7] | WANG W, GARDNER D J, BAUMANN M G D. Volatile organic compound emissions during hot-pressing of southern pine particleboard:Panel size effects and trade-off between press time and temperature[J]. Composites and Manufactured Products, 2002, 52(4):24-30. |
[8] | HE Z, WEI W, ZHANG Y. Dynamic-static chamber method for simultaneous measurement of the diffusion and partition coefficients of VOCs in barrier layers of building materials[J]. Indoor and Built Environment, 2010, 19(4):465-475. |
[9] | LEE J H, KIM S. The determination of the adsorption performance of graphite for VOCs and formaldehyde[J]. Energy and Buildings, 2012, 46:56-61. |
[10] | Verband der Automobilindustrie. Thermal desorption analysis of organic emissions for the characterization of non-metallic materials for automobiles:VDA 278-2011[S]. Germany:Verband der Automobilindustrie, 2011. |
[11] | American Society for Testing Materials International. Standard test method for tensile properties of plastics:ASTM D638[S]. New York:ASTM International, 2003. |
[12] | 全国纤维增强塑料标准化技术委员会. 纤维增强塑料短梁法测定层间剪切强度:JC/T 773-2010[S]. 北京:建材工业出版社, 2010. Fiber Reinforced Plastic of Standardization Administration of China. Fibre reinforced plastics composites-Determination of apparent interlaminar shear strength by short-beam method:JC/T 773-2010[S]. Beijing:China Building Materials Press, 2010(in Chinese). |
[13] | 汪艳, 胡惠敏. 聚乙烯醇改性聚丙烯微孔膜的性能[J]. 武汉工程大学学报, 2014, 36(5):38-41, 73. WANG Yan, HU Huimin. Surface modification of polypropylene microporpous membrane by coating polyvinyl alcohol[J]. Journal of Wuhan Institute of Technology. 2014, 36(5):38-41, 73(in Chinese). |
[14] | 王春红, 白肃跃, 岳鑫敏. 乌拉草纤维热解及其产物挥发性有机物特性分析[J]. 农业工程学报, 2015, 31(10):249-253. WANG Chunhong, BAI Suyue, YUE Xinmin. Pyrolysis and in its products volatile organic compounds characteristics of curaua fiber[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10):249-253(in Chinese). |
[15] | 王定, 王春红, 陈祯, 等. 天然纤维增强聚丙烯基复合材料的制备及静、动态力学性能研究[J]. 塑料工业, 2017, 45(01):108-112. WANG Ding, WANG Chunhong, CHEN Zhen, et al. Preparation and static and dynamic mechanical properties research of natural fiber reinforced polypropylene composites[J]. China Plastics Industry, 2017, 45(01):108-112(in Chinese). |
[16] | 郑霞, 李新功, 吴义强, 等. 竹纤维聚乳酸可生物降解复合材料自然降解性能[J]. 复合材料学报, 2014, 31(2):362-367. ZHENG Xia, LI Xingong, WU Yiqiang, et al. Natural degradation properties of bamboo fibers/polylactic aced biodegradable composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2):362-367(in Chinese). |
[17] | DAYO A Q, GAO B C, WANG J, et al. Natural hemp fiber reinforced polybenzoxazine composites:Curing behavior, mechanical and thermal properties[J]. Composites Science and Technology, 2017, 144(05):114-124. |
[18] | 冀杰, 李云伍. 塑胶产品在汽车中的应用现状及发展趋势[J]. 汽车工艺与材料, 2008(1):61-63. JI Jie, LI Yunwu. Application status and development trend of plastic products in automobile[J]. Automobile Techology & Material, 2008(1):61-63(in Chinese). |
[19] | 邓红云. 麻纤维化学脱胶前后结构和性能的研究[D]. 上海:东华大学, 2014. DENG Yunhong. Study on the sturcture and property of bast fibers with untreated and chemical degumming[D]. Shanghai:Donghua University, 2014(in Chinese). |
[20] | 王飞, 吴建国, 李兰军, 等. 我国汽车内饰VOC现状及发展趋势[J]. 国外塑料, 2013, 11:41-46. WANG Fei, WU Jianguo, LI Lanjun, et al. The situation and development trend of VOC of automobile interior in China[J]. World Plastics, 2013, 11:41-46(in Chinese). |
[21] | BRODZIK K, FABER J. In-vehicle VOCs composition of unconditioned, newly produced cars[J]. Journal of Environmental Sciences, 2014, 26(5):1052-1061. |
[22] | KIM K W, LEE B H, KIM S. Reduction of VOC emission from natural flours filled biodegradable bio-composites for automobile interior[J]. Journal of Hazardous Materials, 2011, 187(1-3):37-43. |
[23] | SILVA L V D, ANGRIZANI C C, AMICO S C. Short beam strength of curaua, sisal, glass and hybrid composites[J]. Journal of Reinforced Plastics & Composites, 2013, 32(3):197-206. |
[24] | 邵瑞华. 泥质活性炭的制备及污泥热解动力学研究[D]. 西安:西安建筑科技大学, 2011. SHAO Ruihua. Sewage sludge-based activated carbon preparation and pyrolysis kinetics of sewage sludge from wastewater treatment plant[D]. Xi'an:Xi'an University of Architecture and Technology, 2011(in Chinese). |
[25] | TERAMOTO N, SAITOH M, KUROIWA J, et al. Morphology and mechanical properties of pullulan/poly(vinyl alcohol) blends crosslinked with glyoxal[J]. Journal of Applied Polymer Science, 2001, 82(9):2273-2280. |