|
- 2017
基于孔隙控制的车身结构树脂传递模塑成型工艺设计
|
Abstract:
以典型车身结构B柱为研究对象,结合实验与仿真分析研究其树脂传递模塑(RTM)工艺的优化设计方法。研究了通过注射方式的优化控制树脂流动前沿,从而达到降低制件孔隙率和保证制件质量的目的。首先通过自制的变厚度渗透率测试模具获取所选用织物的渗透率,之后通过真空辅助RTM实验与对应模拟仿真进行对比分析来验证所采用仿真方法与渗透率数据的可靠性。最后结合充模周期与孔隙率控制理论对RTM工艺注射口分布及注射方式进行优化设计。结果表明,针对所选定车身结构,优化速率注射方式所获得的制件孔隙率最低,但充模周期较长,而基于双点注射的恒流量注射方式能较好地兼顾充模周期与制件孔隙率的要求。 A typical body structure B-pillar was selected as the research object. Experiment and simulation analysis were used to investigate its optimization design method for resin transfer molding method (RTM) process. The injection mode was optimized by control the resin flow front, which could reduce the porosity and ensure the quality of the part. Firstly, the self-manufactured variable thickness permeability test mold was used to obtain the selected fabric permeability, then the robustness of the adopted simulation method and the obtained permeability data were verified by comparing the vacuum-assisted RTM experiments with the virtual simulations. Finally, combing the filing cycle and the porosity controlling theory, the optimal design of the injection port distribution and injection modes of RTM forming process were investigated. The results show that, for the selected automotive structure, the parts with the injection of optimized injection rate acquire the lowest porosity, but their filling cycles are too long, then the injection of a constant flow rate and two injection ports can better take into account the requirement of both the filling cycle and part porosity. 国家自然科学基金(51405150);湖南省自然科学基金(2015JJ3052)
[1] | 张琦, 高强, 赵升吨. 碳纤维复合材料板热冲压成形试验研究[J]. 机械工程学报, 2012, 48(12):72-77. ZHANG Q, GAO Q, ZHAO S D. Thermostamping experimental study on carbon fiber composite sheet[J]. Journal of Mechanical Engineering, 2012, 48(12):72-77 (in Chinese). |
[2] | 景新荣, 刘向丽, 苏霞. RTM成型工艺技术应用及加工工艺性研究浅析[J]. 橡塑技术与装备, 2015(24):132-135. JING X R, LIU X L, SU X. Application and processing technology research of RTM molding process[J]. Rubber/Plastics Technology and Equipment, 2015(24):132-135 (in Chinese). |
[3] | 邢丽英, 蒋诗才, 周正刚. 先进树脂基复合材料制造技术进展[J]. 复合材料学报, 2013, 30(2):1-9. XING L Y, JIANG S C, ZHOU Z G. Progress of manufacturing tecnology development of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2013, 30(2):1-9 (in Chinese). |
[4] | 李艳霞, 顾轶卓, 李敏, 等. 先进复合材料热压罐工艺成型过程压力监测技术[J]. 航空制造技术, 2015, 478(9):82-86. LI Y X, GU Y Z, LI M. Pressure monitoring technology during autoclave process of advanced composites[J]. Aero-nautical Manufacturing Technology, 2015, 478(9):82-86 (in Chinese). |
[5] | WANG C C, BAI G H, WANG Y. Permeability tests of fiber fabrics in the vacuum assisted resin transfer molding process[J]. Applied Composite Materials, 2015, 22(4):363-375. |
[6] | RUIZ E, ACHIM V, SOUKANE S. Optimization of injection flow rate to minimize micro/macro voids formation in resin transfer molded composites[J]. Composites Science and Technology, 2006, 66(3):475-486. |
[7] | ZHANG A Y, LU H B, ZHANG D X. Research on the mechanical properties prediction of carbon/epoxy composite lami-nates with different void contents[J]. Polymer Composites, 2016, 37(1):14-20. |
[8] | BINETRUY C, HILAIRE B, PABIOT J. Tow impregnation model and void formation mechanism during RTM[J]. Journal of Composite Materials, 1998, 32(3):223-245. |
[9] | 牟云飞, 张翔, 林莉. 基于随机孔隙模型的CFRP孔隙率超声检测研究[J]. 机械工程学报, 2010, 46(4):22-26. MU Y F, ZHANG X, LIN L. Investigations on CFRP porosi-ty by using ultrasonic testing based on random pores model[J]. Journal of Mechanical Engineering, 2010, 46(4):22-26 (in Chinese). |
[10] | BODAGHI M, CRISTOVAO C, GOMES R. Experimental characterization of voids in high fibre volume fraction compo-sites processed by high injection pressure RTM[J]. Compo-sites Part A:Applied Science and Manufacturing, 2016, 82:88-99. |
[11] | 于雅琳, 叶金蕊, 刘奎. 含孔隙复合材料超声衰减分析的细观有限元模型[J]. 复合材料学报, 2014, 31(1):171-178. YU Y L, YE J R, LIU K. A mesoscale ultrasonic attenuation finite element model of void-containing composites[J]. Acta Materiae Compositae Sinica, 2014, 31(1):171-178 (in Chinese). |
[12] | 刘玲, 路明坤, 张博明. 孔隙率对碳纤维复合材料超声衰减系数和力学性能的影响[J]. 复合材料学报, 2004, 21(5):116-122. LIU L, LU M K, ZHANG B M. Effects of porosity on the ultrasonic absorption coefficient and mechanical strength of carbon/epoxy composites[J]. Acta Materiae Compositae Sinica, 2004, 21(5):116-112 (in Chinese). |
[13] | 杜善义. 先进复合材料与航空航天[J].复合材料学报, 2007, 24(1):1-12. DU S Y. Advanced composite materals and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12 (in Chinese). |
[14] | YALCINKAYA M A, SARIOGLU A, SOZER E M. A novel mold design for one-continuous permeability measurement of fiber preforms[J]. Journal of Reinforced Plastics and Composites, 2015, 34(11):915-913. |
[15] | GAUVIN R, TROCHU F, LEMENN Y. Permeability measurement and flow simu-lation through fiber reinforcement[J]. Polymer Composites, 1996, 17(1):34-42. |
[16] | PATEL N, LEE L J. Effects of fiber mat architecture on void formation and removal in liquid composite molding[J]. Polymer Composites, 1995, 16(5):396-399. |
[17] | LEE G W, LEE K J. Mechanism of void formation in composite processing with woven fabrics[J]. Polymer Composi-tes, 2003, 11(7):563-572. |
[18] | BREARD J, HENZEL Y, TROCHU F. Analysis of dynamic flows through porous media. Part I:Comparison between saturated and unsaturated flows in fibrous reinforcements[J]. Polymer Composites, 2003, 24(3):391-408. |
[19] | LABAT L, BREARD J, PILLUT L S. Void formation prevision in LCM parts[J]. European Physical Journal Applied Physics, 2001, 16(2):157-164. |
[20] | PATEL N, LEE L J. Modeling of void formation in liquid composite molding. Part Ⅱ:Model development and impregnation[J]. Polymer Composites, 1996, 17(1):104-114. |
[21] | PATEL N, LEE L J. Modeling of void formation in liquid composite molding. Part I:Wettability analysis[J]. Polymer Composites, 1996, 17(1):96-103. |
[22] | JEONG H. Effects of voids on the mechanical strength and ultrasonic attenuation of laminated composites[J]. Journal of Composite Materials, 1997, 31(3):276-292. |