全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

梯度钛合金裂纹扩展速率测试及梯度对扩展寿命影响
Fatigue crack growth rate determination of graded titanium alloys and the influence of gradient for propagation life

DOI: 10.13801/j.cnki.fhclxb.20160331.001

Keywords: 梯度材料,疲劳扩展,Paris公式,扩展寿命,试验研究
graded material
,fatigue propagation,Paris formula,propagation life,test research

Full-Text   Cite this paper   Add to My Lib

Abstract:

为明确梯度材料中裂纹扩展速率分布情况,对含裂纹TC11-TC4以及TA15-TA2两种组合梯度钛合金进行标准三点弯疲劳试验。试验结果表明:梯度结构中不同部位的相同组分扩展性能相同,给出了4种3D打印组分钛合金的Paris公式;梯度材料组分弹性模量的变化会改变裂纹尖端应力强度因子,对位于模量较低一侧的裂纹扩展有抑制作用;过渡层影响厚度范围内裂纹扩展速率介于两种组分之间且连续过渡,表明梯度材料可以消除异种材料连接的界面效应,提出基于组分材料体积分量的混合率描述梯度层中扩展性能的分布规律;恒定载荷试验中仅扩展方向不同情况下寿命有显著差别,验证了合理安排梯度参数可提高结构出现裂纹后的生存能力,其中扩展性能以及模量的变化分布对扩展寿命均有影响。 To make sense of the crack growth rate distribution in graded material, a standard three-point bending fatigue test was performed on two groups of cracked graded titanium alloys TC11-TC4 and TA15-TA2. Test results show that the same components in different parts of graded structure shear an identical propagation property and the Paris formulas of the four kinds of 3D printing titanium alloy have been determined. The variation distribution of elastic modulus influences the stress intensity factor and inhibits the propagation of crack in the lower modulus side. During influence thickness of transition layer, propagation rate is between that of the two components and varies continuously, proving that gradient is able to eliminate the interface effect in the connection of dissimilar materials. A mixing law based on volume rate has been proposed to describe the distribution of crack propagation rate. In the test under constant periodic load, there was a remarkable difference in the propagation life of specimens only propagated along different directions. It means damage tolerance in graded structures can be improved with a reasonable arrangement of the gradient. The variation distribution of modulus and fatigue property both influence the propagation lives. 中央高校基本科研业务费专项资金(NS2016003);机械结构力学及控制国家重点实验室(南京航空航天大学)自主研究课题(0213G01)

References

[1]  SHINNO M, HIRAI M, WATANABE R. Functionally graded materials-super heat-resistant material application in cosmic machine[J]. The Japanese Hournal of Composite Materials, 1987, 13(6):257-264.
[2]  马涛, 赵忠民, 刘良祥, 等. 功能梯度材料的研究进展及应用前景[J]. 化工科技, 2012, 20(1):71-75.MA T, ZHAO Z M, LIU L X, et al. The research development and future application of functionally gradient materials[J]. Science & Technology in Chemical Industry, 2012, 20(1):71-75(in Chinese).
[3]  HOFINGER I, BAHR H A, BALKE H, et al. Fracture mechanical modelling and damage characterization of functionally graded thermal barrier coatings by means of laser irradiation[J]. Materials Science Forum, 1999, 308:450-458.
[4]  BALKE H, BAHR H A. Graded thermal barrier coatings:Cracking due to laser irradiation and determining of interface toughness[J]. Ceramic Transactions, 2001, 114:205-212.
[5]  杨东生, 张盛, 张洪武. 基于耦合扩展多尺度有限元方法的功能梯度材料热应力分析[J]. 复合材料学报, 2015, 32(4):1107-1117.YANG D S, ZHANG S, ZHANG H W. Thermal stress analysis of functionally graded material based on coupling extended multiscale finite element method[J]. Acta Materiae Compositae Sinica, 2015, 32(4):1107-1117(in Chinese).
[6]  国家质量技术监督局. 金属材料疲劳裂纹扩展速率试验方法, GB/T6398-2000[S]. 北京:中国标准出版社, 2000.The state bureau of quality and technical supervision. Standard test method for fatigue crack growth rates of metallic materials, GB/T6398-2000[S]. Beijing:Standards Press of China, 2000(in Chinese).
[7]  KIM J H, PAULINO G H. An accurate scheme for mixed-mode fracture analysis of functionally graded materials using the interaction integral and micromechanics models[J]. International Journal for Numerical Methods in Engineering, 2003, 58:1457-1497(in Chinese).
[8]  陈康, 许希武, 郭树祥. 梯度复合材料应力强度因子计算的梯度扩展单元法[J]. 复合材料学报, 2013, 30(3):168-176.CHEN K, XU X W, GUO S X. Graded extended finite elements for stress intensity factor in gradient composites[J]. Acta Materiae Compositae Sinica, 2013, 30(3):168-176(in Chinese).
[9]  彭凡, 马庆镇, 戴宏亮. 聚合物梯度材料黏弹性断裂的双控制参数[J]. 复合材料学报, 2014, 31(1):33-39.PENG F, MA Q Z, DAI H L. Double control parameters of viscoelastic fracture for polymer graded materials[J]. Acta Materiae Compositae Sinica, 2014, 31(1):33-39(in Chinese).
[10]  TILBROOK M T, MOON R J, HOFFMAN M. Finite element simulations of crack propagation in functionally graded materials under flexural loading[J]. Engineering Fracture Mechanics, 2005, 72(16):2444-2467.
[11]  吕毅, 许希武, 郭树祥. 梯度复合材料裂纹扩展路径和起裂载荷的有限元分析[J]. 复合材料学报, 2015, 32(4):1099-1106.LV Y, XU X W, GUO S X. Finite element analysis of crack paths and crack initiation loads in graded composites[J]. Acta Materiae Compositae Sinica, 2015, 32(4):1099-1106(in Chinese).
[12]  ROUSSEAU C E, TIPPUR H V. Evaluation of crack tip fields and stress intensity factors in functionally graded elastic materials:Cracks parallel to elastic gradient[J]. International Journal of Fracture, 2002, 114(1):87-112.
[13]  许蔚, 姚学锋. 线性规律功能梯度材料断裂行为实验研究[J]. 力学学报, 2008, 40(4):485-495.XU W, YAO X F. Experimental study on fracture behavior of linear functionally gradient materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4):485-495(in Chinese).
[14]  SVEINBJ?RNSSON A, WAGNER L. Near-surface gradient microstructures in metastable beta-titanium alloys for improved fatigue performance[J]. Materials Science Forum, 1999, 308:307-312.
[15]  SIBER B, RETTENMAYR M, MVLLER C, et al. Concentration gradients in aluminium alloys generated by directional solidification and their effects on fatigue crack propagation[J]. Materials Science Forum, 1999, 308:211-218.
[16]  许富民, 朱世杰, 赵杰, 等. SiCp/Al梯度复合材料疲劳裂纹扩展和亚临界扩展行为[J]. 材料工程, 2003(10):11-13.XU F M, ZHU S J, ZHAO J, et al. Fatigue crack growth and subcritical propagation behavior in a SiCp/Al matrix functionally graded-composite[J]. Journal of Materials Engineering, 2003(10):11-13(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133