|
- 2018
激光选区熔化成形原位自生TiB2/Al-Si复合材料的微观组织和力学性能
|
Abstract:
利用激光选区熔化(SLM)技术制备了原位自生TiB2纳米陶瓷颗粒增强Al-Si基复合材料,并对成形后的TiB2/Al-Si复合材料进行不同的热处理。通过XRD物相分析、SEM微观组织观察、电子背散射衍射(EBSD)、EDS元素扫描分析和力学拉伸试验等对TiB2/Al-Si复合材料的微观组织进行观察和力学性能测试。研究表明,在原位自生TiB2纳米陶瓷颗粒和SLM快速凝固特性的共同作用下,SLM成形的原位自生TiB2/Al-Si复合材料具有超细晶结构,平均晶粒尺寸为1.1 μm;TiB2/Al-Si复合材料的力学性能优异,屈服强度为262 MPa,抗拉强度为435 MPa,延伸率为11.88%。对比经不同热处理的TiB2/Al-Si复合材料,直接时效处理(150℃/12 h)的TiB2/Al-Si复合材料性能最优,抗拉强度达到488 MPa,提高了53 MPa,延伸率降低至7.2%。 TiB2/Al-Si composite samples were produced by selective laser melting (SLM), following by different heat treatments. The microstructures and mechanical properties of in-situ TiB2/Al-Si composites before and after different heat treatments were analyzed by XRD, SEM, electron back-scattered diffraction (EBSD), EDS and tensile tests. The results indicate that the as-prepared SLM TiB2/Al-Si composites have ultra-fine microstructures and high mechanical properties due to the high cooling rate of SLM and the existence of nano TiB2 particles. The average grain size is 1.1 μm, and TiB2/Al-Si composites show high yield strength of 262 MPa, high tensile strength of 435 MPa and excellent elongation of 11.88%. For the TiB2/Al-Si composites after different heat treatments, the mechanical properties reach its best after the direct artificial aging (150℃/12 h). The tensile strength of the TiB2/Al-Si composites reaches 488 MPa which increases by 53 MPa, and the elongation decreases to 7.2%. 国家重点研发计划(2016YFB1100100)
[1] | 黄卫东. 材料3D打印技术的研究进展[J]. 新型工业化, 2016, 6(3):53-70. HUANG W D. Research progress of material 3D printing technology[J]. The Journal of New Industrialization, 2016, 6(3):53-70(in Chinese). |
[2] | 张虎, 聂小佳, 朱海红, 等. 激光选区熔化成形高强Al-Cu-Mg合金研究[J]. 中国激光, 2016(5):78-84. ZHANG H, NIE X J, ZHU H H, et al. Study on high strength Al-Cu-Mg alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 2016(5):78-84(in Chinese). |
[3] | OLAKANMI E O, COCHRANE R F, DALGARNO K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders:Processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74:401-477. |
[4] | KANG N, CODDET P, CHEN C, et al. Microstructure and wear behavior of in-situ, hypereutectic Al-high Si alloys produced by selective laser melting[J]. Materials & Design, 2016, 99:120-126. |
[5] | KEMPEN K, THIJS L, HUMBEECK J V, et al. Processing AlSi10Mg by selective laser melting:Parameter optimisation and material characterisation[J]. Materials Science & Technology, 2015, 31(8):917-923. |
[6] | THIJS L, KEMPEN K, KRUTH J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013, 61(5):1809-1819. |
[7] | AHUJA B, KARG M, NAGULIN K Y, et al. Fabrication and characterization of high strength Al-Cu alloys processed using laser beam melting in metal powder bed[J]. Physics Procedia, 2014, 56:135-146. |
[8] | ZHANG H, ZHU H, QI T, et al. Selective laser melting of high strength Al-Cu-Mg alloys:Processing, microstructure and mechanical properties[J]. Materials Science & Engineering A, 2016, 656:47-54. |
[9] | WEI P, WEI Z, CHEN Z, et al. The AlSi10Mg samples produced by selective laser melting:Single track, densification, microstructure and mechanical behavior[J]. Applied Surface Science, 2017, 408:38-50. |
[10] | ANWAR A B, PHAM Q C. Selective laser melting of AlSi10Mg:Effects of scan direction, part placement and inert gas flow velocity on tensile strength[J]. Journal of Materials Processing Technology, 2017, 240:388-396. |
[11] | LI W, LI S, LIU J, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting:Microstructure evolution, mechanical properties and fracture mechanism[J]. Materials Science and Engineering A, 2016, 663:116-125. |
[12] | MENG C, CUI H C, LU F G, et al. Evolution behavior of TiB2, particles during laser welding on aluminum metal matrix composites reinforced with particles[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6):1543-1548. |
[13] | SCHAFFER P L, MILLER D N, DAHLE A K. Crystallography of engulfed and pushed TiB2, particles in aluminium[J]. Scripta Materialia, 2007, 57(12):1129-1132. |
[14] | 郑增, 王联凤, 严彪. 3D打印金属材料研究进展[J]. 上海有色金属, 2016, 37(1):57-60. ZHENG Z, WANG L F, YAN B. Research progress of metal materials for 3D printing[J]. Shanghai Nonferrous Metals, 2016, 37(1):57-60(in Chinese). |
[15] | LI X P, JI G, CHEN Z, et al. Selective laser melting of nano-TiB2, decorated AlSi10Mg alloy with high fracture strength and ductility[J]. Acta Materialia, 2017, 129:183-193. |
[16] | LI X P, WANG X J, SAUNDERS M, et al. A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility[J]. Acta Materialia, 2015, 95:74-82. |
[17] | 韩远飞, 孙相龙, 邱培坤, 等. 颗粒增强钛基复合材料先进加工技术研究与发展[J]. 复合材料学报, 2017, 34(8):1625-1635. HAN Y F, SUN X L, QIU P K, et al. Research and development of processing technology on particulate reinforced titanium matrix composites[J]. Acta Materiae Compositae Sinica, 2017, 34(8):1625-1635(in Chinese). |
[18] | 董鹏, 李忠华, 严振宇, 等. 铝合金激光选区熔化成形技术研究现状[J]. 应用激光, 2015(5):607-611. DONG P, LI Z H, YAN Z Y, et al. Research status of selective laser melting of aluminum alloys[J]. Applied Laser, 2015(5):607-611(in Chinese). |
[19] | LOUVIS E, FOX P, SUTCLIFFE C J. Selective laser melting of aluminium components[J]. Journal of Materials Processing Technology, 2011, 211(2):275-284. |
[20] | 张建平, 乐永康, 毛建伟. 原位自生TiB2/7055复合材料的组织与力学性能[J]. 特种铸造及有色合金, 2009, 29(3):249-251. ZHANG J P, LE Y K, MAO J W. Microstructure and mechanical properties of in-situ sub-micron TiB2/7055 matrix composites[J]. Special Casting and Nonferrous Alloys, 2009, 29(3):249-251(in Chinese). |
[21] | 丁科, 李炜, 毕娟娟, 等. 铝合金中Mg2Si相的时效析出过程[J]. 特种铸造及有色合金, 2009, 29(12):1160-1164. DING K, LI W, BI J J, et al. Survey of aging precipitation process of Mg2Si phase in aluminum alloy[J]. Special-cast and Non-ferrous Alloys, 2009, 29(12):1160-1164(in Chinese). |
[22] | 郭永春, 桑英明, 杨通, 等. Al-Si-(Cu, Mg)合金时效析出相分析[J]. 热加工工艺, 2012, 41(18):213-216. GUO Y C, SANG Y M, YANG T, at el. Analysis on precipitation behavior of Al-Si-(Cu, Mg) alloy during aging treatment[J]. Hot Working Technology, 2012, 41(18):213-216(in Chinese). |