全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

激光选区熔化成形原位自生TiB2/Al-Si复合材料的微观组织和力学性能
Microstructures and mechanical properties of in-situ TiB2/Al-Si composite fabricated by selective laser melting

DOI: 10.13801/j.cnki.fhclxb.20180123.001

Keywords: 激光选区熔化(SLM),原位自生TiB2,Al-Si,复合材料,热处理,微观组织,力学性能
selective laser melting (SLM)
,in-situ TiB2,Al-Si,composites,heat treatment,microstructure,mechanical properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用激光选区熔化(SLM)技术制备了原位自生TiB2纳米陶瓷颗粒增强Al-Si基复合材料,并对成形后的TiB2/Al-Si复合材料进行不同的热处理。通过XRD物相分析、SEM微观组织观察、电子背散射衍射(EBSD)、EDS元素扫描分析和力学拉伸试验等对TiB2/Al-Si复合材料的微观组织进行观察和力学性能测试。研究表明,在原位自生TiB2纳米陶瓷颗粒和SLM快速凝固特性的共同作用下,SLM成形的原位自生TiB2/Al-Si复合材料具有超细晶结构,平均晶粒尺寸为1.1 μm;TiB2/Al-Si复合材料的力学性能优异,屈服强度为262 MPa,抗拉强度为435 MPa,延伸率为11.88%。对比经不同热处理的TiB2/Al-Si复合材料,直接时效处理(150℃/12 h)的TiB2/Al-Si复合材料性能最优,抗拉强度达到488 MPa,提高了53 MPa,延伸率降低至7.2%。 TiB2/Al-Si composite samples were produced by selective laser melting (SLM), following by different heat treatments. The microstructures and mechanical properties of in-situ TiB2/Al-Si composites before and after different heat treatments were analyzed by XRD, SEM, electron back-scattered diffraction (EBSD), EDS and tensile tests. The results indicate that the as-prepared SLM TiB2/Al-Si composites have ultra-fine microstructures and high mechanical properties due to the high cooling rate of SLM and the existence of nano TiB2 particles. The average grain size is 1.1 μm, and TiB2/Al-Si composites show high yield strength of 262 MPa, high tensile strength of 435 MPa and excellent elongation of 11.88%. For the TiB2/Al-Si composites after different heat treatments, the mechanical properties reach its best after the direct artificial aging (150℃/12 h). The tensile strength of the TiB2/Al-Si composites reaches 488 MPa which increases by 53 MPa, and the elongation decreases to 7.2%. 国家重点研发计划(2016YFB1100100)

References

[1]  黄卫东. 材料3D打印技术的研究进展[J]. 新型工业化, 2016, 6(3):53-70. HUANG W D. Research progress of material 3D printing technology[J]. The Journal of New Industrialization, 2016, 6(3):53-70(in Chinese).
[2]  张虎, 聂小佳, 朱海红, 等. 激光选区熔化成形高强Al-Cu-Mg合金研究[J]. 中国激光, 2016(5):78-84. ZHANG H, NIE X J, ZHU H H, et al. Study on high strength Al-Cu-Mg alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 2016(5):78-84(in Chinese).
[3]  OLAKANMI E O, COCHRANE R F, DALGARNO K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders:Processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74:401-477.
[4]  KANG N, CODDET P, CHEN C, et al. Microstructure and wear behavior of in-situ, hypereutectic Al-high Si alloys produced by selective laser melting[J]. Materials & Design, 2016, 99:120-126.
[5]  KEMPEN K, THIJS L, HUMBEECK J V, et al. Processing AlSi10Mg by selective laser melting:Parameter optimisation and material characterisation[J]. Materials Science & Technology, 2015, 31(8):917-923.
[6]  THIJS L, KEMPEN K, KRUTH J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013, 61(5):1809-1819.
[7]  AHUJA B, KARG M, NAGULIN K Y, et al. Fabrication and characterization of high strength Al-Cu alloys processed using laser beam melting in metal powder bed[J]. Physics Procedia, 2014, 56:135-146.
[8]  ZHANG H, ZHU H, QI T, et al. Selective laser melting of high strength Al-Cu-Mg alloys:Processing, microstructure and mechanical properties[J]. Materials Science & Engineering A, 2016, 656:47-54.
[9]  WEI P, WEI Z, CHEN Z, et al. The AlSi10Mg samples produced by selective laser melting:Single track, densification, microstructure and mechanical behavior[J]. Applied Surface Science, 2017, 408:38-50.
[10]  ANWAR A B, PHAM Q C. Selective laser melting of AlSi10Mg:Effects of scan direction, part placement and inert gas flow velocity on tensile strength[J]. Journal of Materials Processing Technology, 2017, 240:388-396.
[11]  LI W, LI S, LIU J, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting:Microstructure evolution, mechanical properties and fracture mechanism[J]. Materials Science and Engineering A, 2016, 663:116-125.
[12]  MENG C, CUI H C, LU F G, et al. Evolution behavior of TiB2, particles during laser welding on aluminum metal matrix composites reinforced with particles[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6):1543-1548.
[13]  SCHAFFER P L, MILLER D N, DAHLE A K. Crystallography of engulfed and pushed TiB2, particles in aluminium[J]. Scripta Materialia, 2007, 57(12):1129-1132.
[14]  郑增, 王联凤, 严彪. 3D打印金属材料研究进展[J]. 上海有色金属, 2016, 37(1):57-60. ZHENG Z, WANG L F, YAN B. Research progress of metal materials for 3D printing[J]. Shanghai Nonferrous Metals, 2016, 37(1):57-60(in Chinese).
[15]  LI X P, JI G, CHEN Z, et al. Selective laser melting of nano-TiB2, decorated AlSi10Mg alloy with high fracture strength and ductility[J]. Acta Materialia, 2017, 129:183-193.
[16]  LI X P, WANG X J, SAUNDERS M, et al. A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility[J]. Acta Materialia, 2015, 95:74-82.
[17]  韩远飞, 孙相龙, 邱培坤, 等. 颗粒增强钛基复合材料先进加工技术研究与发展[J]. 复合材料学报, 2017, 34(8):1625-1635. HAN Y F, SUN X L, QIU P K, et al. Research and development of processing technology on particulate reinforced titanium matrix composites[J]. Acta Materiae Compositae Sinica, 2017, 34(8):1625-1635(in Chinese).
[18]  董鹏, 李忠华, 严振宇, 等. 铝合金激光选区熔化成形技术研究现状[J]. 应用激光, 2015(5):607-611. DONG P, LI Z H, YAN Z Y, et al. Research status of selective laser melting of aluminum alloys[J]. Applied Laser, 2015(5):607-611(in Chinese).
[19]  LOUVIS E, FOX P, SUTCLIFFE C J. Selective laser melting of aluminium components[J]. Journal of Materials Processing Technology, 2011, 211(2):275-284.
[20]  张建平, 乐永康, 毛建伟. 原位自生TiB2/7055复合材料的组织与力学性能[J]. 特种铸造及有色合金, 2009, 29(3):249-251. ZHANG J P, LE Y K, MAO J W. Microstructure and mechanical properties of in-situ sub-micron TiB2/7055 matrix composites[J]. Special Casting and Nonferrous Alloys, 2009, 29(3):249-251(in Chinese).
[21]  丁科, 李炜, 毕娟娟, 等. 铝合金中Mg2Si相的时效析出过程[J]. 特种铸造及有色合金, 2009, 29(12):1160-1164. DING K, LI W, BI J J, et al. Survey of aging precipitation process of Mg2Si phase in aluminum alloy[J]. Special-cast and Non-ferrous Alloys, 2009, 29(12):1160-1164(in Chinese).
[22]  郭永春, 桑英明, 杨通, 等. Al-Si-(Cu, Mg)合金时效析出相分析[J]. 热加工工艺, 2012, 41(18):213-216. GUO Y C, SANG Y M, YANG T, at el. Analysis on precipitation behavior of Al-Si-(Cu, Mg) alloy during aging treatment[J]. Hot Working Technology, 2012, 41(18):213-216(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133