全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

含孔洞缺陷复合材料的压阻效应
Piezoresistive behavior of composites with hole defects

DOI: 10.13801/j.cnki.fhclxb.20170608.005

Keywords: 压阻效应,孔洞缺陷,均匀化方法,压阻系数,电阻率
piezoresistive effects
,hole defects,homogenization method,piezoresistive coefficients,electrical resistivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

以康铜材料为例,将具有孔洞的不均匀复合材料的平均应力和平均电阻率之间的关系由均质材料的应力和电阻率关系代替,运用有限元方法和均匀化方法计算了含孔洞正方形板的初始电阻率和压阻系数。结果发现:康铜材料的初始电阻率和压阻系数π11和π22均随着孔洞体分比的增大而增大,压阻系数π12和π21反而随着孔洞体分比的增大而减小,其中,三角形孔洞对康铜材料的初始电阻率和压阻系数影响最大。 The effect of holes on initial electrical resistivity and piezoresistive coefficients was investigated by taking constantan as an example. The relationship between average stresses and average electrical resistivity of an inhomogeneous composites with holes was replaced by that of a homogeneous material. The homogenization method was used to calculate initial electrical resistivity and piezoresistive coefficients of a square plate with holes. The conclusions can be summarized as follows. Initial electrical resistivity and piezoresistive coefficients π11, π22 of constantan material increase with the increase of volume fraction of holes, and piezoresistive coefficients π12, π21 decrease. Effect of triangle holes on initial electrical resistivity and piezoresistive coefficients of constantan material is the most obvious. 国家自然科学基金(11472020)

References

[1]  BARLIAN A A, PARK W T, MALLON J R, et al. Review:Semiconductor piezoresistance for microsystems[J]. Proceedings of the IEEE, 2009, 97(3):513-552.
[2]  BHUSHAN B. Piezoresistive effect[M]. Dordrecht:Springer, 2012.
[3]  CULLINAN M A, PANAS R M, DIBIASIO C M, et al. Scaling electromechanical sensors down to the nanoscale[J]. Sensors & Actuators A:Physical, 2012, 187(8):162-173.
[4]  ALPUIM P, CORREIA V, MARINS E S, et al. Piezoresistive silicon thin film sensor array for biomedical applications[J]. Thin Solid Films, 2011, 519(14):4574-4577.
[5]  JACQ C, MAEDER T, RYSER P. High-strain response of piezoresistive thick-film resistors on titanium alloy substrates[J]. Journal of the European Ceramic Society, 2004, 24(6):1897-1900.
[6]  RAY P, RAO V R. Al-doped ZnO thin-film transistor embedded micro-cantilever as a piezoresistive sensor[J]. Applied Physics Letters, 2013, 102(6):289-290.
[7]  ALPUIM P, FILONOVICH S A, COSTA C M, et al. Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon[J]. Journal of Non-Crystalline Solids, 2008, 354(19-25):2585-2589.
[8]  XIAO J, LI Y, FAN W X. A laminate theory of piezoresistance for composite laminates[J]. Composites Science & Technology, 1999, 59(9):1369-1373.
[9]  李琦, 武文革, 李学瑞, 等. 康铜薄膜压力传感器的有限元分析[J]. 制造业自动化, 2013(15):99-101. LI Q, WU W G, LI X R, et al. Finite element analysis of the constantan thin-film pressure sensor[J]. Manufacturing Automation, 2013(15):99-101(in Chinese).
[10]  李学瑞, 武文革, 成云平, 等. 康铜薄膜测力传感器的模型设计[J]. 机械设计与制造, 2014(03):148-150. LI X R, WU W G, CHENG Y P, et al. Design of a constantan thin film sensor model for measuring force[J]. Machinery Design & Manufacture, 2014(03):148-150(in Chinese).
[11]  牛德芳. 力学量敏感器件及其应用[M]. 北京:科学出版社, 1987. NIU D F. The sensitive device of measuring mechanical and its application[M]. Beijing:Science Press, 1987(in Chinese).
[12]  CHEN R F, ZUO D W, SUN Y L, et al. Investigation on strain films in the thin film resistance strain gauge[J]. Key Engineering Materials, 2008, 375-376:690-694.
[13]  ZHANG X, LI X. Design and characterization of thin-film system for microsensors embedding in Ti6Al4V alloys[J]. IEEE Sensors Journal, 2010, 10(4):839-846.
[14]  IRAJ K, ELHAM K, MANSOOR F. Fabrication and nanostructure study of ultra thin electroplating constantan film on GaAs as a thermopower sensor[J]. Journal of Physics:Conference Series, 2008, 100(5):052025-052029.
[15]  HUR S G, KIM D J, KANG B D, et al. The structural and electrical properties of CuNi thin-film resistors grown on AlN substrates for Ⅱ-type attenuator application[J]. Journal of the Electrochemical Society, 2005, 152(6):G472-G476.
[16]  HU C, GAO Y, SHENG Z. The piezoresistance coefficients of copper and copper-nickel alloys[J]. Journal of Materials Science, 2000, 35(2):381-386.
[17]  沈观林, 胡更开, 刘彬. 复合材料力学[M]. 北京:清华大学出版社, 2013. SHEN G L, HU G K, LIU B. Mechanics of composite materials[M]. Beijing:Tsinghua University Press, 2013(in Chinese).
[18]  KULKARNI M, CARNAHAN D, KULKARNI K, et al. Elastic response of a carbon nanotube fiber reinforced polymeric composite:A numerical and experimental study[J]. Composites Part B:Engineering, 2010, 41(5):414-421.
[19]  TODOROKI A, TANAKA M, SHIMAMURA Y. Measurement of orthotropic electric conductance of CFRP laminates and analysis of the effect on delamination monitoring with an electric resistance change method[J]. Composites Science & Technology, 2002, 62(5):619-628.
[20]  ABOT J L, KIYONO C Y, THOMAS G P, et al. Strain gauge sensors comprised of carbon nanotube yarn:Parametric numerical analysis of their piezoresistive response[J]. Smart Materials & Structures, 2015, 24(7):075018-075033.
[21]  ABOT J L, SILVA E C N, KIYONO C Y, et al. Strain gauge sensor comprised of carbon nanotube yarn:Concept and modeling[J]. Blucher Material Science Proceedings, 2014, 1(1):98-101.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133