|
- 2018
爆炸荷载作用下复合材料加筋板的动力响应
|
Abstract:
为了减轻抗爆结构质量,采用玻璃纤维增强聚合物基复合材料(SMC)与碳纤维增强聚合物基复合材料(CFRP)预浸料,通过数值模拟和等效计算理论,对传统加筋抗爆板结构进行轻质高强设计。利用LS-DYNA有限元数值模拟软件进行分析,发现在爆炸荷载作用下加筋板的运动以弹性运动为主,该种复合材料具有较好的抗爆性能。对复合材料加筋板结构进行参数化分析,发现在爆炸荷载作用下横筋对加筋板结构最大位移值影响最大,纵筋和面板对加筋板的影响依次减小。结合刚度折算方法,建立了爆炸荷载作用下正交异性加筋板结构动力响应分析理论。利用该理论计算得到板结构在爆炸荷载作用下的最大位移,与数值模拟对比发现两者结果较为接近,为加筋抗爆板的设计提供了一种简化有效的计算方法。 To get a lightweight anti-blast structure, short-cut glass fiber reinforced composite (SMC) and carbon fiber reinforced plastics (CFRP) were adopted to design and make stiffened plate. Finite element simulation based on LS-DYNA reveals that the composite stiffened panel has excellent anti-blast ability through large elastic deformation and the panel will rebound back completely with little residual deformation. Parametrized analyses reveal that transverse bars greatly influence the maximum flexure of the stiffened plates under blast. Their contribution to the rigidity of the panel is much greater than the longitudinal reinforcement and the skin. Applying equivalent volume conversion method, the stiffened panel is simplified as a uniform panel and the dynamic response of the composite stiffened panel is predicted theoretically. Precision and validity of the prediction in flexure are testified by the numerical simulation. 国家自然科学基金(11672130;51478465;51508567);江苏省自然科学基金(BK20150713)
[1] | 王善, 盖京波, 杨世全. 舰船结构在爆炸载荷作下的破坏研究综述[J]. 舰船科学技术, 2006, 28(3):8-11. WANG S, GAI J B, YANG S Q. Research on destruction of ship structures under explosive loads[J]. Ship Science and Technology, 2006, 28(3):8-11(in Chinese). |
[2] | 魏汝斌, 翟文, 李锋, 等. 高效抗冲击复合材料在防弹防爆方舱中的应用[J]. 工程塑料应用, 2016, 44(4):131-135. WEI R B, ZHAI W, LI F, et al. Application of high efficiency impact resistant composites in bulletproof and explosionproof shelter[J]. Engineering Plastics Application, 2016, 44(4):131-135(in Chinese). |
[3] | 刘玉秋, 聂武. 鱼雷命中后舰船的载荷计算和剩余强度评估[J]. 海军工程大学学报, 2005, 17(6):43-47. LIU Y Q, NIE W. The load calculation and residual strength evaluation of a ship after hit by a torpedo[J]. Journal of Naval University of Engineering, 2005, 17(6):43-47(in Chinese). |
[4] | 张勇. 地面防护工程抗爆复合材料与结构研究[D]. 徐州:中国矿业大学, 2014. ZHANG Y. Research on the antiknock composite material and structure of ground defense engineering[D]. Xuzhou:China University of Mining and Technology, 2014(in Chinese). |
[5] | MENG F M, ZHANG B, ZHAO Z, et al. A novel all-composite blast-resistant door structure with hierarchical stiffeners[J]. Composite Structures, 2016, 148:113-126. |
[6] | VICTOR B. Plate structures[M]. New York:Springer Netherlands, 2011. |
[7] | 葛东云, 莫与明, 何柏灵, 等. 复合材料帽型加筋板轴压试验及承载能力预测[J]. 复合材料学报, 2016, 33(7):1531-1539. GE D Y, MO Y M, HE B L, et al. Test and ultimate load capacity prediction of hat-stiffened composite panel under axial compression[J]. Acta Materiae Compositae Sinica, 2016, 33(7):1531-1539(in Chinese). |
[8] | 夏志成, 王曦浩, 赵跃堂, 等. 钢板夹泡沫铝组合板抗爆性能研究[J]. 振动与冲击, 2017, 36(2):117-122. XIA Z C, WANG X H, ZHAO Y T, et al. Anti-blast performance of aluminum foam-core sandwich panels[J]. Journal of Vibration and Shock, 2017, 36(2):117-122(in Chinese). |
[9] | 周楠, 蒋敬, 樊武龙, 等. 泡沫铝夹芯材料抗爆抗侵彻性能研究进展[J]. 科学技术与工程, 2017, 17(4):117-125. ZHOU N, JIANG J, PAN W L, et al. Research advances in the anti-explosion and anti-penetration performance of sandwich material with aluminum foam core[J]. Science Technology and Engineering, 2017, 17(4):117-125(in Chinese). |
[10] | 尚仁杰, 吴转琴, 李佩勋, 等. 一种正交各向异性板的等效各向同性板计算法[J]. 力学与实践, 2009, 31(1):57-60. SHANG R J, WU Z Q, LI P X, et al. Equivalent isotropic plate method for orthotropic plates[J]. Mechanics and Practice, 2009, 31(1):57-60(in Chinese). |
[11] | TARUN K, MANOHAR G G. Analysis of orthotropic plates based on three theories by segmentation method[J]. Mechanics of Advanced Materials & Structures, 2002, 9(3):189-239. |
[12] | 王年桥. 防护结构计算原理与设计[M]. 南京:中国人民解放军工程兵工程学院, 1998. WANG N Q. Principle of protective structure calculation[M]. Nanjing:Chinese People's Liberation Army Engineering College, 1998(in Chinese). |
[13] | 孔斌, 叶强, 陈普会, 等. 复合材料整体加筋板轴压后屈曲失效表征[J]. 复合材料学报, 2010, 27(5):150-155. KONG B, YE Q, CHEN P H, et al. Post-buckling failure characterization of an integrated stiffened composite panel under uniaxial compression[J]. Acta Materiae Compositae Sinica, 2010, 27(5):150-155(in Chinese). |
[14] | 邵青, 何宇廷, 张腾, 等. 侧边边界条件对复合材料加筋板轴压载荷下屈曲和后屈曲性能的影响[J]. 复合材料学报, 2014, 31(3):741-748. SHAO Q, HE Y T, ZHANG T, et al. Influence of side boundary condition on buckling and post-buckling performance of composite stiffened panels under axial compression load[J]. Acta Materiae Compositae Sinica, 2014, 31(3):741-748(in Chinese). |
[15] | 袁天, 孔祥韶, 吴卫国. 钢板/凯夫拉层合结构爆炸响应数值分析[J]. 中国舰船研究, 2016, 11(5):84-90. YUAN T, KONG X S, WU W G. Numerical simulation of steel/Kevlar laminated structures under explosive load[J]. Chinese Journal of Ship Research, 2016, 11(5):84-90(in Chinese). |
[16] | SHI X H, ZHANG J, SOARES C G. Experimental study on collapse of cracked stiffened plate with initial imperfections under compression[J]. Thin-Walled Structures, 2017, 114:39-51. |