|
- 2018
表面改性纳米SiO2增强木质纤维/聚氯乙烯复合材料性能
|
Abstract:
SiO2粒子经偶联剂γ-氨丙基三乙氧基硅烷(KH550)表面改性后,与木质纤维、聚氯乙烯(PVC)及其它助剂通过熔融混炼制备改性SiO2-木质纤维/PVC复合材料,用FTIR、SEM和同步热分析仪(STA)对SiO2粒子和SiO2-木质纤维/PVC复合材料的结构与性能进行测试与表征。FTIR分析表明,SiO2粒子表面接枝了KH550的特征官能团,KH550成功地接枝到SiO2粒子表面;SEM分析表明,改性纳米SiO2粒子能在木质纤维/PVC复合材料中均匀分散,其粒径在100 nm左右;添加改性的SiO2粒子后,木质纤维和PVC结合更加紧密,孔洞间隙减少。纳米SiO2质量分别占木质纤维质量的10%、8%和10%时,SiO2-木质纤维/PVC复合材料的弹性模量、拉伸强度、冲击强度分别达到最优值4.66 GPa、31.12 MPa和4.11 kJ/m2,与未添加SiO2的复合材料相比分别提高了50.29%、28.91%和16.65%。 The surface modification of nano SiO2 particles with γ-aminopropyl triethoxysilane(KH550) was carried out, The SiO2-wood fiber/polyvinyl chloride(PVC) composites were prepared by melt-mixing with wood fiber, PVC and other additives. The structure and properties of SiO2 particles and SiO2-wood fiber/PVC composites were tested and characterized by FTIR, SEM and STA.FTIR analysis shows that the surface of SiO2 particles bond KH550 characteristic organic functional group, KH550 successfully grafts to the surface of SiO2 particles. SEM analysis shows that the modified nano-SiO2 particles can be dispersed uniformly in the SiO2-wood fiber/PVC composites with a particle size of about 100 nm; After adding the modified SiO2 particles, the combination of wood fiber and PVC is more tight, the hole gap is reduced. When the mass ratio of nano SiO2 to wood flour mass is 10%, 8%, 10%, the mechanical property of the SiO2-wood fiber/PVC composites will reach the optimal state:elastic modulus, tensile-strength and impact-strength are 4.66 GPa, 31.12 MPa and 4.11 kJ/m2, increased by 50.29%, 28.91% and 16.65%, respectively. 国家林业公益性行业科研专项资助项目(201504503);国家自然科学基金(31770606);湖南省科技重大专项(2017NK1010)
[1] | 徐开蒙, 李凯夫, 曹馨蕾, 等. PVC基木塑复合材料界面结合改性研究进展[J]. 塑料工业, 2014, 42(2):9-14. XU K M, LI K F, CAO X L, et al. Research progress of interfacial bonding modification of PVC-based wood plastic composites[J]. China Plastics Industry, 2014, 42(2):9-14(in Chinese). |
[2] | 伍波, 张求慧, 王永波. 木塑复合材料界面化学改性研究进展[J]. 化工新型材料, 2010, 38(5):28-30. WU B, ZHANG Q H, WANG Y B. Research situation of interface chemical modification of wood plastics composites[J]. New Chemical Materials, 2010, 38(5):28-30(in Chinese). |
[3] | SAHEB D N, JOG J P. Natural fiber polymer composites:A review[J]. Advances in Polymer Technology, 1999, 18(4):351-363. |
[4] | 付文, 王丽, 刘安华. 木塑复合材料改性研究进展[J]. 高分子通报, 2010(3):61-65. FU W, WANG L, LIU A H. Modification research progress of wood-plastic composites[J]. Chinese Polymer Bulletin, 2010(3):61-65(in Chinese). |
[5] | 王磊, 曹金珍. 偶联剂在木塑复合材料中的应用及研究[J]. 林产工业, 2008, 35(6):9-14. WANG L, CAO J Z. Application and research of the coupling agents for wood-plastic composite[J]. China Forest Products Industry, 2008, 35(6):9-14(in Chinese). |
[6] | 单薇, 廖明义. 纳米SiO2的表面处理及其在聚合物基纳米复合材料中的应用进展[J]. 高分子通报, 2006(3):1-9. SHAN W, LIAO M Y. Modification of nanosilica particles and research advances of polymer(silica nanocomposites[J]. Chinese Polymer Bulletin, 2006(3):1-9(in Chinese). |
[7] | JESIONOWSKI T, KRYSZTAFKIEWICZ A. Influence of silane coupling agents on surface properties of precipitated silicas[J]. Applied Surface Science, 2001, 172(1-2):18-32. |
[8] | 苏瑞彩, 李文芳, 彭继华, 等. 硅烷偶联剂KH-570对纳米SiO2的表面改性及其分散稳定性[J]. 化工进展, 2009, 28(9):1596-1599. SU R C, LI W F, PENG J H, et al. Surface modification of nano-sized SiO2 with silane coupling agent and its dispersion[J]. Chemical Industry and Engineering Progress, 2009, 28(9):1596-1599(in Chinese). |
[9] | 李金玲, 王宝辉, 李莉, 等. 纳米二氧化硅表面改性研究[J]. 材料开发与应用, 2011, 26(2):18-21. LI J L, WANG B H, LI L, et al. Study on the surface modification of nano-SiO2 power[J]. Development and Application of Materials, 2011, 26(2):18-21(in Chinese). |
[10] | 张云浩, 翟兰兰, 王彦, 等. 硅烷偶联剂KH-570表面改性SiO2[J]. 材料科学与工程学报, 2012, 30(5):752-756. ZHANG Y H, ZHAI L L, WANG Y, et al. Surface modification of nano-SiO2 by silane coupling agent 3-(methacryloyloxy)propyltrimethoxysilane[J]. Journal of Materials Science and Engineering, 2012, 30(5):752-756(in Chinese). |
[11] | TOLNAI G Y, CSEMPESZA F, KABALF M, et al. Preparation and characterization of surfacae-modified silica-nano-particicles[J]. Langmuir, 2001, 17(9):2683-2687. |
[12] | 袁光明, 刘元, 吴义强, 等. 杉木-纳米SiO2复合材料结构表征及复合机理研究[J]. 湖南大学学报(自然科学版), 2009, 36(9):59-62. YUAN G M, LIU Y, WU Y Q, et al. Study on structure characterization and combining mechanism of Chinese fir/nano-SiO2 composite[J]. Journal of Hunan University(Natural Sciences), 2009, 36(9):59-62(in Chinese). |
[13] | 罗卫华, 王正良, 袁彩霞, 等. 反应增容HDPE基木塑复合材料及增容机制[J]. 复合材料学报, 2014, 31(1):125-132. LUO W H, WANG Z L, YUAN C X, et al. Reactive compatibilization of wood fibre/HDPE composites and its mechanism[J]. Acta Materiae Compositae Sinica, 2014, 31(1):125-132(in Chinese). |
[14] | 张洪文, 张杨, 姜彦, 等. 大分子偶联剂的合成及其对SiO2/三元乙丙橡胶复合材料性能的影响[J]. 复合材料学报, 2015, 32(4):969-976. ZHANG H W, ZHANG Y, JIANG Y, et al. Synthesis of macromolecular coupling agent and its effects on properties of SiO2/ethylene-propylene-diene monomer composites[J]. Acta Materiae Compositae Sinica, 2015, 32(4):969-976(in Chinese). |
[15] | 杨斌, 章继峰, 梁文彦, 等. 玻璃纤维表面纳米SiO2改性对GF/PCBT复合材料力学性能的影响[J]. 复合材料学报, 2015, 32(3):691-698. YANG B, ZHANG J F, LIANG W Y, et al. Effects of glass fiber surface modified by nano-SiO2 on mechanical properties of GF/PCBT composites[J]. Acta Materiae Compositae Sinica, 2015, 32(3):691-698(in Chinese). |