|
- 2017
基于一种新修正偶应力理论的平面正交各向异性功能梯度梁静弯曲模型及尺度效应
|
Abstract:
[1] | KOIZUMI M. FGM activities in Japan[J]. Composites Part B:Engineering. 1997, 28(1):1-4. |
[2] | FU Y, DU H, ZHANG S. Functionally graded TiN/TiNi shape memory alloy films[J]. Materials Letters, 2003, 57(20):2995-2999. |
[3] | RAHAEIFARD M, KAHROBAIYAN M H, AHMADIAN M T. Sensitivity analysis of atomic force microscope cantile-ver made of functionally graded materials[C]//ASME International Design Engineering Technical Conferences and Computer and Information in Engineering Conference. San Diego, 2009:539-544. |
[4] | WITVROUW A, MEHTA A. The use of functionally gra-ded poly-SiGe layers for MEMS applications[J]. Material Science Forum, 2005, 8:255-260. |
[5] | ST?LKEN J S, EVANS A G. A microbend test method for measuring the plasticity length scale[J]. Acta Materialia, 1998, 46(14):5109-5115. |
[6] | FLECK N A, MULLER G M, ASHBY M F, et al. Strain gradient plasticity:Theory and experiment[J]. Acta Metallu-rgica et Materialia, 1994, 42(2):475-487. |
[7] | FLECK N A, HUTCHINSON J W. Strain gradient plasticity[J]. Advances in Applied Mechanics, 1997, 33:295-361. |
[8] | LAM D C C, YANG F, CHONG A C M, et al. Experiments and theory in strain gradient elasticity[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(8):1477-1508. |
[9] | YANG F, CHONG A C M, LAM D C C, et al. Couple stress based strain gradient theory for elasticity[J]. Interna-tional Journal of Solids and Structures, 2002, 39(10):2731-2743. |
[10] | PARK S K, GAO X L. Bernoulli-Euler beam model based on a modified couple stress theory[J]. Journal of Micro-mechanics and Microengineering, 2006, 16(11):2355. |
[11] | ASGHARI M, RAHAEIFARD M, KAHROBAIYAN M, et al. The modified couple stress functionally graded Timo-shenko beam formulation[J]. Materials & Design, 2011, 32(3):1435-1443. |
[12] | ASGHARI M, AHMADIAN M T, KAHROBAIYAN M H, et al. On the size-dependent behavior of functionally graded microbeams[J]. Materials & Design, 2010, 31(5):2324-2329. |
[13] | KE L L, WANG Y. Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory[J]. Composite Structures, 2011, 93(2):342-350. |
[14] | NATEGHI A, SALAMAT-TALAB M, REZAPOUR J, et al. Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory[J]. Applied Mathematical Modelling, 2012, 36(10):4971-4987. |
[15] | ?IM?EK M, REDDY J N. A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory[J]. Composite Structures, 2013, 101(15):47-58. |
[16] | CHEN W J, LI X P. A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model[J]. Archive of Applied Mechanics, 2014, 84(3):323-341. |
[17] | 贺丹, 杨万里. 基于新修正偶应力理论的斜交铺设层合Kirchhoff板模型与尺度效应[J]. 复合材料学报, 2016, 33(6):1311-1317 HE D, YANG W L. Model of angle-ply laminate Kirchhoff plate based on new modified couples stress theory and scale effect[J]. Acta Materiae Compositae Sinica, 2016, 33(6):1311-1317(in Chinese). |
[18] | 李莉, 陈万吉, 李小鹏. 修正偶应力理论层合薄板自由振动模型及尺度效应[J]. 大连理工大学学报. 2013,53(3):313-321. LI L, CHEN W J, LI X P. Free vibration model of composite laminated thin plate based on modified couple stress theory and scale effects[J]. Journal of Dalian University of Tech-nology, 2013, 53(3):313-321(in Chinese). |
[19] | CHEN W J, CHEN W W, SZE K Y. A model of composite laminated Reddy beam based on a modified couple-stress theory[J]. Composite Structures, 2012, 94(8):2599-2609. |
[20] | FLECK N A, MULLER G M, ASHBY M F, et al. Strain gradient plasticity:Theory and experiment[J]. Acta Meta-llurgica et Materialia, 1994, 42(2):475-487. |
[21] | 李莉, 陈万吉, 郑楠. 修正偶应力理论层合薄板稳定性模型及尺度效应[J]. 工程力学. 2013, 30(5):1-7. LI L, CHEN W J, ZHENG N. Model of composite laminated thin plate base on modified couple stress theory and buckling analysis of scale effects[J].Engineering Mechanics, 2013, 30(5):1-7(in Chinese). |