|
- 2018
高导热低填量聚合物基复合材料研究进展
|
Abstract:
高导热低填量聚合物基复合材料在电子封装和大功率电子设备等领域有着巨大需求。通常高导热聚合物是通过在高分子基体中均匀分散高含量的导热填料来实现的,然而较高填料含量会极大地恶化复合材料力学性能和提升材料经济成本,因此高填量复合材料很难满足当前工业应用上的需求。综述了近年来高导热低填量聚合物基复合材料制备研究进展,简要介绍了导热机制和影响低填量聚合物基复合材料导热性能的主要因素,按照不同填料类型介绍了一些热导率高于1.0 W/(m·K)且填充量低于10vol%的高导热低填量聚合物基复合材料的制备方法和研究进展,展望了高导热低填量聚合物基复合材料的发展方向。 The demands of polymer-based composites with high thermal conductivity and low filler loading are significant in many applications such as electronic packaging and high-power electronic equipment. In general, the enhanced thermal conductivity requires dispersed filler with high loading in polymer matrix. However, the large amount of fillers usually results in the large degradation of mechanical property and high cost, which will lead to the composites difficult to meet the demands of present industrial applications. In this review, the current research progress on polymer-based composites with high thermal conductivity and low loading was discussed. Its thermal conduction mechanism and some factors, which primarily affected the thermal conductivity of composites, were recommended. And some methods that were used in preparing polymer-based composites with a thermal conductivity over 1.0 W/(m·K) and a low filler loading below 10vol%, were introduced according to different filler type. The challenges and outlook for polymer-based composites with high thermal conductivity and low filler loading were outlined. 国家自然科学基金(51573201);浙江省公益技术应用研究计划(2016C31026)
[1] | MOORE A L, LI S. Emerging challenges and materials for thermal management of electronics[J]. Mater Today, 2014, 17(4):163-174. |
[2] | KIM G H. High thermal conductivity in amorphous polymer blends by engineered interchain interactions[J]. Nature Material, 2014, 14(3):295-300. |
[3] | TANAKA T, KOZAKO M, OKAMOTO K. Toward high thermal conductivity nano micro epoxy composites with sufficient endurance voltage[J]. Journal of International Council on Electrical Engineering, 2014, 2(1):90-98. |
[4] | AKATSUKA M, TAKEZAWA Y. Study of high thermal conductive epoxy resinscontaining controlled high-order structures[J]. Journal Applied Polymer Science, 2003, 89(9):2464-2467. |
[5] | CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites:Fundamentals and applications[J]. Progress Polymer Science, 2016, 59:41-85. |
[6] | KUSUNOSE T, YAGI T, FIROZ S H, et al. Fabrication of epoxy/silicon nitride nanowire composites and evaluation of their thermal conductivity[J]. Journal Materials Chemistry A, 2013, 1(10):3440-3445. |
[7] | HU J, HUANG Y, YAO Y, et al. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of bN[J]. ACS Applied Materials & Interfaces, 2017, 9(15):13544-13553. |
[8] | YU J, HUANG X, WU C, et al. Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties[J]. Polymer, 2012, 53(2):471-480. |
[9] | WARZOHA R J, FLEISCHER A S. Heat flow at nanoparticle interfaces[J]. Nano Energy, 2014, 6(10):137-158. |
[10] | ZENG C, LU S, SONG L, et al. Enhanced thermal properties in a hybrid graphene-alumina filler for epoxy composites[J]. RSC Advances, 2015, 5(45):35773-35782. |
[11] | YANG J, ZHANG E, LI X, et al. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage[J]. Carbon, 2016, 98:50-57. |
[12] | YUAN S, BAI J, CHUA C K, et al. Highly enhanced thermal conductivity of thermoplastic nanocomposites with a low mass fraction of MWCNTs by a facilitated latex approach[J]. Composites Part A, 2016, 90:699-710. |
[13] | DATSYUK V, TROTSENKO S, REICH S. Carbon-nanotube-polymer nanofibers with high thermal conductivity[J]. Carbon, 2013, 52:605-608. |
[14] | WANG S, CHENG Y, WANG R, et al. Highly thermal conductive copper nanowire composites with ultralow loading:Toward applications as thermal interface materials[J]. ACS Applied Materials & Interfaces, 2014, 6(9):6481-6486. |
[15] | ZHOU W, ZUO J, REN W. Thermal conductivity and dielectric properties of Al/PVDF composites[J]. Composites Part A, 2012, 43(4):658-664. |
[16] | SAMIMI F, BABAPOOR A, AZIZI M, et al. Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers[J]. Energy, 2016, 96:355-371. |
[17] | ANDRITSCH T, KOCHETOV R, GEBREKIROS Y T, et al. Short term DC breakdown strength in epoxy based BN nano-and microcomposites[C]. IEEE International Conference on Solid Dielectrics, USA:West Lafayette, 2010:1-4. |
[18] | SHI Z, RADWAN M, KIRIHARA S, et al. Enhanced thermal conductivity of polymer composites filled with three-dimensional brushlike AlN nanowhiskers[J]. Applied Physics Letters, 2009, 95(22):224103-224104. |
[19] | YUAN C, DUAN B, LI L, et al. Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets[J]. ACS Applied Materials & Interfaces, 2015, 7(23):13000-13006. |
[20] | POP E, VARSHNEY V, ROY A K. Thermal properties of graphene:Fundamentals and applications[J]. 2D Materials, 2013, 37(12):1273-1281. |
[21] | LIAN G, TUAN C C, LI L, et al. Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading[J]. Chemistry Materials, 2016, 28(17):6096-6104. |
[22] | KIM K, KIM J. Core-shell structured BN/PPS composite film for high thermal conductivity with low filler concentration[J]. Composites Science & Technology, 2016, 134:209-216. |
[23] | BERBER S, KWON Y K, TOMANEK D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters, 2000, 84(20):4613-4616. |
[24] | GULOTTY R, CASTELLINO M, JAGDALE P, et al. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites[J]. Acs Nano, 2013, 7(6):5114-5121. |
[25] | BALACHANDER N, SESHADRI I, MEHTA R J, et al. Nanowire-filled polymer composites with ultrahigh thermal conductivity[J]. Applied Physical Letters, 2013, 102(9):093117. |
[26] | HAN Z, FINA A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites:A review[J]. Progress Polymer Science, 2011, 36(7):914-944. |
[27] | YUAN F Y, ZHANG H B, LI X, et al. Synergistic effect of boron nitride flakes and tetrapod-shaped ZnO whiskers on the thermal conductivity of electrically insulating phenol formaldehyde composites[J]. Composites Part A, 2013, 53(19):137-144. |
[28] | LIU Z, SHEN D, YU J, et al. Exceptionally high thermal and electrical conductivity of three-dimensional graphene-foam-based polymer composites[J]. RSC Advances, 2016, 6(27):22364-22369. |
[29] | HUANG X, WANG S, ZHU M, et al. Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization[J]. Nanotechnology, 2015, 26(1):015705. |
[30] | WU H, ROGALSKI M, KESSLER MR. Zirconiumtungstate/epoxy nanocomposites:Effect of nanoparticle morphology and negative thermal expansivity[J]. ACS Applied Materials & Interfaces, 2013, 5(19):9478. |
[31] | BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3):902-907. |
[32] | SONG S H, PARK K H, KIM B H, et al. Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization[J]. Advanced Materials, 2013, 25(5):732-737. |
[33] | SHAHIL K M, BALANDIN A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Letters, 2012, 12(2):861-867. |
[34] | SICHEL E K, MILLER R E, ABRAHAMS M S, et al. Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride[J]. Physical Review B:Condensed Matter, 1976, 13(10):4607-4611. |
[35] | ZENG X, YAO Y, GONG Z, et al. Ice-templated assembly strategy to construct 3d boron nitride nanosheet networks in polymer composites for thermal conductivity improvement[J]. Small, 2015, 11(46):6205-6213. |
[36] | ZHANG D L, ZHA J W, LI C Q, et al. High thermal conductivity and excellent electrical insulation performance in double-percolated three-phase polymer nanocomposites[J]. Composite Science & Technology, 2017, 144:36-42. |