全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

纳米SiO2-氧化石墨烯/聚偏氟乙烯杂化膜的制备及特性
Preparation and properties of nano SiO2-GO/polyvinylidene fluoride hybrid membrane

DOI: 10.13801/j.cnki.fhclxb.20170705.004

Keywords: 纳米颗粒,氧化石墨烯,聚偏氟乙烯,杂化膜,抗污染
nanoparticle
,graphene oxide,poly vinylidene fluoride,hybrid membrane,antifouling

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用原位水解的方式制备了新型SiO2-氧化石墨烯(GO)纳米杂化颗粒。选择GO、SiO2、SiO2-GO颗粒和聚乙烯吡咯烷酮(PVP)为添加剂,采用浸没沉淀相转化法分别制备了聚偏氟乙烯(PVDF)杂化膜。测定了PVDF杂化膜的纯水通量、膜面接触角、牛血清白蛋白(BSA)截留率和污染恢复率等参数。结果表明,SiO2-GO/PVDF-PVP膜的接触角从78.4°减小到66.02°,膜的亲水性能有所提升。同时,SiO2-GO/PVDF-PVP膜的纯水通量最大(1 018 L/(m2·h)),对BSA的截留率达到81.5%,污染恢复率达到了78.65%以上。新型SiO2-GO纳米杂化颗粒协同PVP添加剂增强了PVDF超滤膜的水通量、污染物截留和抗污染特性等综合性能,为传统PVDF有机膜的改性提供了一种新方法。 SiO2-GO nanohybrid particle was produced via insitu hydrolysis. Through adding SiO2, GO, SiO2-GO nanohybrid particles and polyvinylpyrrolidone (PVP) respectively, the polyvinylidene fluoride(PVDF) hybrid membrane was first prepared through phase inversion by an immersion precipitation technique. The pure water flux, contact angle, fouling recover rate of PVDF hybrid membrane etc were determined. The results show that the contact angles of SiO2-GO/PVDF-PVP hybrid membrane decrease from 78.4° to 66.02°. The rejection rate of bovine serum albumin (BSA) exceeds 81.5% under high water flux (1 018 L/(m2·h)) and the membrane fouling recovery rate is highest (BSA=78.65%). The results show that the synergistic effect of SiO2-GO nanohybrid particles and PVP improve the properties and antifouling ability of hybrid membrane. 陕西省重点科技创新团队计划(2017KCT-19-01);陕西省重点产业链(群)项目(2017ZDCXL-GY-07-02)

References

[1]  GANESH B M, ISLOOR A M, ISMAIL A F. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane[J]. Desalination, 2013, 313(7):199-207.
[2]  CELIK E, PARK H, CHOI H, et al, Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment[J]. Water Research, 2011, 45(1):274-282.
[3]  吴再辉, 秦珊, 白帆, 等. 阻抗渐变低介电BaTiO3/PVDF复合纤维膜的设计与电纺制备[J]. 复合材料学报, 2016, 33(8):1671-1676. WU Z H, QIN S, BAI F, et al. Design and fabrication of low-dielectric BaTiO3/PVDF composite fibrous mat with impedance gradient by electrospinning[J]. Acta Materiae Compositae Sinica, 2016, 33(8):1671-1676(in Chinese).
[4]  EFOME J E, RANA D, MATSUURA T, et al. Enhanced performance of PVDF nanocomposite membrane by nanofiber coating:A membrane for sustainable desalination through MD[J]. Water Research, 2016, 89:39-49.
[5]  KUMAR M, GHOLAMVAND Z, MORRISSEY A, et al. Preparation and characterization of low fouling novel hybrid ultrafiltration membranes based on the blends of GO-TiO2 nanocomposite and polysulfone for humic acid removal[J]. Journal of Membrane Science, 2016, 506:38-49.
[6]  WANG M, FANG D, WANG N, et al. Preparation of PVDF/PVP core-shell nanofibers mats via homogeneous electrospinning[J]. Polymer, 2014, 55(9):2188-2196.
[7]  CHANG X, WANG Z, QUAN S, et al. Exploring the synergetic effects of graphene oxide(GO) and polyvinylpyrrodione(PVP) on poly(vinylylidenefluoride)(PVDF) ultrafiltration membrane performance[J]. Appied Surface Science, 2014, 316(1):537-548.
[8]  ZHU Z Y, WANG L, XU Y W, et al. Preparation and characteristics of graphene oxide-blending PVDF nanohybrid membranes and their applications for hazardous dye adsorption and rejection[J]. Journal of Colloid & Interface Science, 2017, 504:429-439.
[9]  IRFAN M, IDRIS A, YUSOF N M, et al. Surface modification and performance enhancement of nano-hybrid f-MWCNT/PVP90/PES hemodialysis membranes[J]. Journal of Membrane Science, 2014, 467(19):73-84.
[10]  王金龙, 王文一, 史菁元, 等. 多壁碳纳米管/聚偏氟乙烯高介电常数复合材料的制备与性能[J]. 复合材料学报, 2015, 32(5):1355-1360. WAND J L, WANG W Y, SHI J Y, et al. Preparation and properties of multi walled carbon nanotubes/poly(vinylidene fluoride) high dielectric constant composites[J]. Acta Materiae Compositae Sinica, 2015, 32(5):1355-1360(in Chinese).
[11]  HAN L F, XU Z L, CAO Y, et al. Preparation, characterization and permeation property of Al2O3, Al2O3-SiO2 and Al2O3-kaolin hollow fiber membranes[J]. Journal of Membrane Science, 2011, 372(1-2):154-164.
[12]  YI X S, YU S L, SHI W X, et al. Estimation of fouling stages in separation of oil/water emulsion using nano-particles Al2O3/TiO2 modified PVDF UF membranes[J]. Desalination, 2013, 319(10):38-46.
[13]  NAM J A, NAHAIN A A, KIM S M, et al. Successful stabilization of functionalized hybrid graphene for high-performance antimicrobial activity[J]. Acta Biomaterialia, 2013, 9(8):7996-8003.
[14]  DAUD M, KAMAL M S, SHEHZAD F, et al. Graphene/layered double hydroxides nanocomposites:A review of recent progress in synthesis and applications[J]. Carbon, 2016, 104:241-252.
[15]  WU H, TANG B, WU P. Development of novel SiO2-GO nanohybrid/polysulfone membrane with enhanced performance[J]. Journal of Membrane Science, 2014, 451(1):94-102.
[16]  KOU L, GAO C. Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings[J]. Nanoscale, 2011, 3(2):519-528.
[17]  LI Z K, LANG W Z, MIAO W, et al. Preparation and properties of PVDF/SiO2@GO nanohybrid membranes via thermally induced phase separation method[J]. Journal of Membrane Science, 2016(511):151-161.
[18]  MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide[J]. Acs Nano, 2010, 4(8):4806-4814.
[19]  SHI H, HE Y, PAN Y, et al. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation[J]. Journal of Membrane Science, 2016, 506:60-70.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133