全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

丁羟包覆层的黏超弹本构模型
Visco-hyperelastic constitutive model of hydroxyl-terminated polybutadiene inhibitor

DOI: 10.13801/j.cnki.fhclxb.20180211.002

Keywords: 丁羟(HTPB)包覆层,黏超弹性,本构模型,应力松弛,单轴拉伸
hydroxyl-terminated polybutadiene (HTPB) inhibitor
,visco-hyperelasticity,constitutive model,stress relaxation,uniaxial tension

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了准确地描述丁羟(HTPB)包覆层在有限变形下的拉伸力学特性,研究了HTPB包覆层的黏超弹本构模型。分别构建了含率相关函数的本构模型和并联式本构模型,前者由超弹模型与率相关项相乘得到,后者由超弹模型与含损伤因子的黏弹模型并联而成。进行了HTPB包覆层的单步松弛、多步松弛和不同速率的单轴拉伸试验,并将试验数据用于拟合模型参数。结果表明,HTPB包覆层对应变率极其敏感,且具有很大的延伸率,表现出明显的黏超弹特性;两种模型均能很好地预测HTPB包覆层较大形变范围内的拉伸力学性能,其中含率相关函数的模型的描述更加准确,其研究具有重要的军事意义。 The visco-hyperelastic constitutive models of hydroxyl-terminated polybutadiene (HTPB) inhibitor were studied to describe the tensile mechanical properties accurately under finite deformation. Visco-hyperelastic constitutive model with rate related function and parallel constitutive model were built respectively, and the first model was multiplicatively combined by hyper-elastic model and rate related function, while the latter model was parallelly formed by hyper-elastic model and viscoelastic model containing damage factor. In order to fit the model parameters by the test data, the single-step relaxation test, multi-step relaxation test and uniaxial tensile test at various rates of HTPB inhibitor were undertaken. The results show that HTPB inhibitor is extremely sensitive to strain rate and has a great elongation, reflecting the obvious visco-hyperelasticity. Both of the models are able to predict the tensile mechanical properties of HTPB inhibitor in a large deformation range, meanwhile the model with rate related function can describe the mechanical properties more precisely, which is of great military significance. 军内重点科研(ZS2015070132A12002)

References

[1]  张中水. EPDM绝热包覆层热解特性及本构模型研究[D]. 南京:南京理工大学, 2016. ZHANG Zhongshui. Research on pyrolysis properties and constitutive model of EPDM insulation[D]. Nanjing:Nanjing University of Science & Technology, 2016(in Chinese).
[2]  CHAND S, SAHAY K, SAXENA R. Nonlinear visco-hyperelastic constitutive relation for brain tissue with parametric sensitivity study[J]. Engineering in Medicine ang Biology Society, 1995, 14(3):91-92.
[3]  ANANI Y, ALIZADEH Y. Visco-hyperelastic constitutive law for modeling of foam's behavior[J]. Material & Design, 2011, 32(5):2940-2948.
[4]  谈炳东, 许进升, 贾云飞, 等. 短纤维增强EPDM包覆薄膜超弹性本构模型[J]. 力学学报, 2017, 49(2):317-323. TAN Bingdong, XU Jinsheng, JIA Yunfei, et al. Hyperelastic constitutive model for short fiber reinforced EPDM inhibitor film[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2):317-323(in Chinese).
[5]  张晓, 郑坚, 彭威, 等. HTPB复合固体推进剂黏弹性应变能及非线性本构模型[J]. 固体火箭技术, 2015, 8(6):827-832. ZHANG Xiao, ZHENG Jian, PENG Wei, et al. Viscoelastic strain energy and nonlinear constitutive model for HTPB composite solid propellant[J]. Journal of Solid Rocket Technology 2015, 38(6):827-832(in Chinese).
[6]  常武军, 鞠玉涛, 胡少青. HTPB固化胶片的超弹性本构模型[J]. 推进技术, 2012, 33(5):795-798. CHANG Wujun, JU Yutao, HU Shaoqing. Research on hyperelastic constitutive model for HTPB crosslinked specimen[J]. Journal of Propulsion Technology, 2012, 33(5):795-798(in Chinese).
[7]  黄克智, 黄永刚. 高等固体力学[M]. 北京:清华大学出版社, 2013. HUANG Kezhi, HUANG Yonggang. Advanced solid mechanics[J]. Beijing:Tsinghua University Press, 2013(in Chinese).
[8]  郑明军, 王文静, 陈政南, 等. 橡胶Mooney-Rivlin模型力学性能常数的确定[J]. 橡胶工业, 2003, 50(8):462-465. ZHENG Mingjun, WANG Wenjing, CHEN Zhengnan, et al. Determination for mechanical constants of rubber Mooney-Rivlin model[J]. Rubber Industry, 2003, 50(8):462-465(in Chinese).
[9]  余家泉, 陈雄, 周长省, 等. EPDM薄膜橡胶包覆材料的黏-超弹本构模型研究[J]. 推进技术, 2015, 36(3):465-470. YU Jiaquan, CHEN Xiong, ZHOU Changsheng, et al. Visco-Hyperelastic constitutive model for filmy EPDM inhibitor[J]. Journal of Propulsion Technology, 2015, 36(3):465-470(in Chinese).
[10]  AKLONIS J J, MACNIGHT W J, 沈明琦. 聚合物黏弹性引论[M]. 北京:中国宇航出版社, 2015. AKLONIS J J, MACNIGHT W J, SHEN M Q. Introduction to polymer viscoelasticity[M]. Beijing:China Aerospace Publishing House, 2015(in Chinese).
[11]  杨光松. 损伤力学与复合材料损伤[M]. 北京:国防工业出版社, 1995. YANG Guangsong. Damage mechanics and composite material damage[M]. Beijing:National Defence Industry Press, 1995(in Chinese).
[12]  顾志旭, 郑坚, 彭威, 等. 复合固体推进剂黏弹性微裂纹损伤本构模型[J]. 复合材料学报, 2018, 35(5):1203-1210. GU Zhixu, ZHENG Jian, PENG Wei, et al. A viscoelastic constitutive model of solid composite propellants with micro-cracking damage[J]. Acta Materiae Compositae Sinica, 2018, 35(5):1203-1210(in Chinese).
[13]  蒙上阳, 杨晓红, 杨军辉. 野战火箭发动机结构完整性评估数值方法[M]. 北京:国防工业出版社, 2015. MENG Shangyang, YANG Xiaohong, YANG Junhui. Numerical method of structural integrity evaluation of field rocket mortor[M]. Beijing:National Defence Industry Press, 2015(in Chinese).
[14]  侯林法. 复合固体推进剂[M]. 北京:北京宇航出版社, 1994. HOU Linfa. Composite solid propellant[M]. Beijing:China Aerospace Publishing House, 1994(in Chinese).
[15]  贾登. 三元乙丙橡胶黏结界面变温力学特性及应用研究[D]. 南京:南京理工大学, 2016. JIA Deng. Research of the temperature-dependent mechanical property of adhesive interface between EPDM films[D]. Nanjing:Nanjing University of Science & Technology, 2016(in Chinese).
[16]  徐进升, 鞠玉刚, 周长省, 等. 模数对药柱热应力的影响[J]. 弹道学报, 2011, 32(3):74-78. XU Jinsheng, JU Yugang, ZHOU Changsheng, et al. Influence of model on thermal stress of grain[J]. Journal of Ballistics, 2011, 32(3):74-78(in Chinese).
[17]  LEU L J, MUKHERJEE S. Sensivity analysis of hyperelastic-viscoplastic solids undergoing large deformations[J]. Computational Mechanics, 1994, 15(2):101-116.
[18]  SONG B, CHEN W, CHENG M. Novel model for uniaxial strain-rate-dependent stress-strain behavior of ethylene-propylene-dine monomer rubber in compression or tension[J]. Journal of Applied Polymer Science, 2004, 92(3):1553-1558.
[19]  YANG L, SHIM V, LIM C. A visco-hyperelastic approach to modelling the constitutive behavior of rubber[J]. International Journal of Impact Engineering, 2000, 24(6):545-560.
[20]  杨晓红, 许进升, 孙俊丽, 等. 三元乙丙材料黏超弹本构模型研究[J]. 兵工学报, 2014, 35(8):1205-1209. YANG Xiaohong, XU Jinsheng, SUN Junli, et al. Research on visco-hyperelastic constitutive model of EPDM[J]. Acta Armamentarii, 2014, 35(8):1205-1209(in Chinese).
[21]  杨晓红, 周长省, 常武军, 等. 丁羟包覆层力学特性及本构模型研究[J]. 弹道学报, 2014, 26(4):94-97. YANG Xiaohong, ZHOU Changsheng, CHANG Wujun, et al. Research on mechanical properties and constitutive model of HTPB rubber inhibitor[J]. Journal of Ballistics, 2014, 26(4):94-97(in Chinese).
[22]  林适中. 固体发动机燃烧室内绝热、衬层材料拉伸试验方法:QJ 916-85[S]. 北京:航天局708所, 1985. LIN S Z. Tensile test of insulation and inhibitor materials of solid engine combustion chamber:QJ 916-85[S]. Beijing:Space Agency 708, 1985(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133