|
- 2017
基于弹性-黏弹性对应原理的复合材料层合板模态阻尼预测:理论及其有限元实现
|
Abstract:
提出一种利用通用有限元软件求解复合材料结构模态阻尼的有限元方法。该方法基于扩展弹性-黏弹性对应原理,定义出具有频率依存性的黏弹性复合材料复刚度矩阵,并借助ABAQUS提供的二次开发接口UMAT将其编入求解器中,结合复特征值法求解任意铺层层合板的模态阻尼。与已有的理论方法相比,本模型的计算结果更为接近实验数据。从而验证了本文提出的数值分析方法的有效性和精确性,为利用ABAQUS软件分析各向异性材料阻尼提供了一条有效途径。 A finite element method for the modal damping analysis of composite structures by using a general purpose finite element software was proposed. The method was based on an extended elastic-viscoelastic correspondence principle, which accounted the frequency dependence of viscoelastic complex stiffness matrices. The implementation of the proposed model was described as a UMAT subroutine for ABAQUS/Standard. Subsequently, the analyses of modal damping and frequency response for laminated composites were implemented by using the complex eigenvalue method. As compared with existing approaches, the computed results from this model are more close to the test data. Thus the proposed numerical method is quite efficient and accurate, and capable of providing an effective way to determine the modal damping of anisotropic materials by using ABAQUS code. 中央高校基本科研业务费专项基金(0220219105)
[1] | 张振, 肖毅, 刘彦清, 等. 基于振动疲劳试验的复合材料螺栓连接预紧力松弛特性[J]. 复合材料学报, 2016, 33(1): 163-173. ZHANG Z, XIAO Y, LIU Y Q, et al. Preload relaxation characteristics in composite bolted joints based on vibration fatigue test[J]. Acta Materiae Compositae Sinica, 2016, 33(1): 163-173 (in Chinese). |
[2] | FLOR F R, MEDEIROS R, TITA V. Numerical and experimental damage identification in metal-composite bonded joint[J]. The Journal of Adhesion, 2015, 91(10-11): 863-882. |
[3] | 庄小燕, 陈浩然. 基于频率和阻尼分析的含分层损伤复合材料层合板的损伤诊断[J]. 复合材料学报, 2005, 22(6): 150-155. ZHUANG X Y, CHEN H R. Delamination detection by using frequency and damping analysis in conjunction with neural networks[J]. Acta Materiae Compositae Sinica, 2005, 22(6): 150-155 (in Chinese). |
[4] | PEI X, CHEN L, LI J, et al. Effect of damage on the vibration modal of a novel three-dimensional and four-directional braided composite T-beam[J]. Composites Part B: Engineering, 2016, 86: 108-119. |
[5] | TREVISO A, GENECHTEN V B, MUNDO D, et al. Damping in composite materials: properties and models[J]. Composites Part B: Engineering, 2015, 78: 144-152. |
[6] | HASHIN Z V I. Complex moduli of viscoelastic composites—I. General theory and application to particulate composites[J]. International Journal of Solids and Structures, 1970, 6(5): 539-552. |
[7] | GIBSON R F, PLUNKETT R. Dynamic mechanical behavior of fiber-reinforced composites: Measurement and analysis[J]. Journal of Composite Materials, 1976, 10(4): 325-341. |
[8] | ADAMS R D, BACON D G C. Measurement of the flexural damping capacity and dynamic Young's modulus of metals and reinforced plastics[J]. Journal of Physics D: Applied Physics, 2002, 6(1): 27-41. |
[9] | CRANE R M, GILLESPIE J W. Analytical model for prediction of the damping loss factor of composite materials[J]. Polymer Composites, 1992, 13(3): 179-190. |
[10] | VESCOVINI R, BISAGNI C. A procedure for the evaluation of damping effects in composite laminated structures[J]. Progress in Aerospace Sciences, 2015, 78: 19-29. |
[11] | 罗忠, 杨坤, 梅志远. 纤维增强复合材料动力学固有特性及阻尼特性分析[J]. 材料导报, 2013, 27(S1): 126-129. LUO Z, YANG K, MEI Z Y. The analysis of the dynamic natural characteristics and damping of the GFRP laminate composite[J]. Materials Review, 2013, 27(S1): 126-129 (in Chinese). |
[12] | 关永军, 危银涛. 基于有效三维损耗矩阵的复合材料层合板模态阻尼预测[J]. 复合材料学报, 2008, 25(4): 174-180. GUAN Y J, WEI Y T. FRP laminates modal damping prediction based on 3-D effective damping matrix[J]. Acta Materiae Compositae Sinica, 2008, 25(4): 174-180 (in Chinese). |
[13] | HU B G, DOKAINISH M A. Damped vibrations of laminated composite plates-modeling and finite element analysis[J]. Finite Elements in Analysis and Design, 1993, 15(2): 103-124. |
[14] | YANG C, OYADIJI S O. Detection of delamination in composite beams using frequency deviations due to concentrated mass loading[J]. Composite Structures, 2016, 146: 1-13. |
[15] | 杨云昭, 徐超, 吴妙章. 考虑粘弹性材料频变特性的复合结构频率响应分析[J]. 固体力学学报, 2015, 36(s1): 105-110. YANG Y Z, XU C, WU M Z. Frequency response analysis of laminate structures with frequency-dependent viscoelastic layers[J]. Chinese Journal of Solid Mechanics, 2015, 36(s1): 105-110 (in Chinese). |
[16] | 梁森, 李雪, 王东山, 等. 多层阻尼薄膜嵌入的共固化复合材料结构动力学性能[J]. 复合材料学报, 2015, 32(5): 1453-1460. LIANG S, LI X, WANG D S, etal. Dynamics property of co-cured composite structure with multilayer damping membranes embedded[J]. Acta Materiae Compositae Sinica, 2015, 32(5): 1453-1460 (in Chinese). |
[17] | 牛义, 刘权利, 常永乐, 等. 基于Ritz法的纤维增强复合薄板阻尼分析与预测[J]. 中国工程机械学报, 2016, 14(2): 162-167. NIU Y, LIU Q L, CHANG Y L, et al. Damping analysis on fiber-reinforced composites thin plate based on Ritz method[J]. Chinese Journal of Construction Machinery, 2016, 14(2): 162-167 (in Chinese). |
[18] | QU Y, LONG X, LI H, et al. A variational formulation for dynamic analysis of composite laminated beams based on a general higher-order shear deformation theory[J]. Composite Structures, 2013, 102: 175-192. |
[19] | ALTENBACH H, EREMEYEV V A, NAUMENKO K. On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer[J]. ZAMM-Journal of Applied Mathematics and Mechanics, 2015, 95(10): 1004-1011. |
[20] | JIN G, YANG C, LIU Z. Vibration and damping analysis of sandwich viscoelastic-core beam using Reddy's higher-order theory[J]. Composite Structures, 2016, 140: 390-409. |
[21] | LAKES R S. Viscoelastic materials [M]. New York: Cambridge University Press, 2009. |
[22] | LIN D X, NI R G, ADAMS R D. Prediction and measurement of the vibrational damping parameters of carbon and glass fiber-reinforced plastics plates[J]. Journal of Composite Materials, 1984, 18(2): 132-152. |
[23] | ALAM N, ASNANI N T. Vibration and damping analysis of fibre reinforced composite material plates[J]. Journal of Composite Materials, 1986, 20(1): 2-18. |