全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

MWCNTs增强聚乙二醇-聚乙烯醇复合水凝胶的制备及性能
Preparation and properties of MWCNTs reinforced polyethylene glycol-polyvinyl alcohol composite hydrogel

DOI: 10.13801/j.cnki.fhclxb.20160919.004

Keywords: 碳纳米管,聚乙二醇,聚乙烯醇,水凝胶,微观结构,拉伸强度,电导率
carbon nanotubes
,polyethylene glycol,polyvinyl alcohol,hydrogel,microstructure,tensile strength,conductivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用冻融循环法制备了羧基化多壁碳纳米管(MWCNTs)/聚乙二醇(PEG)-聚乙烯醇(PVA)复合水凝胶。考察了不同质量配比下MWCNTs/PEG-PVA复合水凝胶的微观形貌变化,并研究了复合凝胶的溶胀性能、拉伸强度、热稳定及导电性能。结果表明,加入MWCNTs后MWCNTs/PEG-PVA复合凝胶仍具有多孔的三维网状结构但孔径尺寸变小。当MWCNTs与PVA的质量比大于1.0:100时,MWCNTs/PEG-PVA复合凝胶的孔洞均匀性降低。随着MWCNTs量的增加,MWCNTs/PEG-PVA复合凝胶的溶胀度及拉伸强度均先升高后降低。当MWCNTs与PVA的质量比为1.0:100时,MWCNTs/PEG-PVA复合凝胶的溶胀度达到最大(1450%),孔隙率最高(75.8%),拉伸强度及断裂伸长率达到最大值,分别为0.97 MPa和384.0%。MWCNTs的加入提高了MWCNTs/PEG-PVA复合凝胶的热稳定性,MWCNTs/PEG-PVA复合凝胶的初始热分解温度从235℃上升至260℃;随着MWCNTs量的增加,MWCNTs/PEG-PVA复合凝胶的电导率从1.10×10-6 S/cm升高至 6.96×10-4 S/cm。 Carboxy-functionalized multi-walled carbon nanotubes(MWCNTs)/polyethylene glycol (PEG)-poly-vinyl alcohol (PVA) composite hydrogels were prepared by the freezing/thawing method. The microstructure, swelling property, tensile strength, thermal stability and conductivity of MWCNTs/PEG-PVA composite hydrogels with different mass ratios were studied. The results show that the MWCNTs/PEG-PVA hydrogel still has a porous 3D structure, but the pore size becomes smaller after the addition of MWCNTs. When the mass ratio of MWCNTs to PVA is larger than 1.0:100, the uniformity of the porous structure of the MWCNTs/PEG-PVA hydrogel decreases. With the increment of MWCNTs content, the swelling degree and tensile strength of the MWCNTs/PEG-PVA composite hydrogel increase first and then decrease. When the mass ratio of MWCNTs to PVA is 1.0:100, the swelling degree and porosity of the MWCNTs/PEG-PVA hydrogel reach the maximum (1450% and 75.8%, respectively). The tensile strength and elongation reach a maximum value of 0.97 MPa and 384.0%, respectively. The addition of MWCNTs improves the thermal stability of the composite hydrogel, and the initial thermal decomposition temperature of MWCNTs/PEG-PVA composite hydrogel increases from 235℃ to 260℃. With the increment of the amount of MWCNTs, the conductivity of the composite hydrogel increases from 1.10×10-6 S/cm to 6.96×10-4 S/cm. 国家自然科学基金(31300483);江苏省自然科学基金(BK20130971);江苏高校优势学科建设工程资助项目

References

[1]  乔堃, 郑裕东, 李佳琪, 等. 纳米细菌纤维素/聚乙烯醇复合水凝胶在模拟体液中的疲劳行为[J]. 复合材料学报, 2015, 32(5): 1271-1278. QIAO Kun, ZHENG Yudong, LI Jiaqi, et al. Fatigue behavior of nano bacterial cellulose/poly(vinyl alcohol) composite hydrogels in simulated body fluid[J]. Acta Materiae Compo-sitae Sinica, 2015, 32(5): 1271-1278 (in Chinese).
[2]  张领, 孙晓锋, 景占鑫, 等. 半纤维素/碳纳米管复合凝胶的溶胀性能[J]. 化工进展, 2013, 32 (8): 1881-1886. ZHANG Ling, SUN Xiaofeng, JING Zhanxin, et al. Swelling property of hemicellulose/carbon nanotube composite gel[J]. Chemical Industry and Engineering Progress, 2013, 32 (8): 1881-1886 (in Chinese).
[3]  邢季, 杨熙, 第凤, 等. 碳纳米管/聚吡咯导电水凝胶修饰生物电极的研究[J]. 中国科技论文, 2014, 9(12): 1368-1371. XING Ji, YANG Xi, DI Feng, et al. Research on carbon nanotubes/polypyrrole conductive hydrogel modified bioelectroode[J]. China Sciencepaper, 2014, 9(12): 1368-1371 (in Chinese).
[4]  易苏, 焦延平, 陈建芳, 等. 不同方法合成聚乙烯醇水凝胶性能研究[J]. 湖南工程学院学报(自然科学版), 2014, 24(2): 66-68. SU Yi, JIAO Yanping, CHEN Jianfang, et al. Properties of polyvinyl alcohol hydrogel by different methods[J]. Journal of Hu'nan Institute of Engineering (Natural Science Edition), 2014, 24(2): 66-68 (in Chinese).
[5]  邓新旺, 胡惠媛, 罗仲宽, 等. 肝素钠/聚乙烯醇复合水凝胶的制备与性能[J]. 应用化学, 2015, 32(12): 1358-1363. DENG Xinwan, HU Huiyuan, LUO Zhongkuan, et al. Preparation and properties of heparin sodium/polyvinyl alcohol composite hydrogel[J]. Chinese Journal of Applied Chemistry, 2015, 32(12): 1358-1363 (in Chinese).
[6]  龚桂胜, 钟玉鹏, 刘景勃, 等. 高浓度聚乙烯醇水凝胶性能研究[J]. 胶体与聚合物, 2015, 33(3): 123-126. GONG Guisheng, ZHONG Yupeng, LIU Jingbo, et al. Research on performance of high concentration PVA hydrogels[J]. Chinese Journal of Colloid & Polymer, 2015(3): 123-126 (in Chinese).
[7]  闫尔云, 郝小原, 刘中贤, 等. PVA/CS水凝胶的制备与性能研究[J]. 齐齐哈尔大学学报: 自然科学版, 2015, 31(2): 1-4. YAN Eryun, HAO Xiaoyuan, LIU Zhongxian, et al. Preparation and properties of PVA/CS hydrogel[J]. Journal of Qiqihar University(Natural Science Edition), 2015, 31(2): 1-4 (in Chinese).
[8]  王娜, 王园园, 陈兴波, 等. 聚乙烯醇/壳聚糖复合水凝胶的物理化学性质[J]. 中国科学: 化学, 2014, 44(10): 1591-1598. WANG Na, WANG Yuanyuan, CHEN Xingbo, et al. The physical-chemistry properties of poly(vinyl alcohol)/chitosan composite hydrogels[J]. Scientia Sinica: Chimica, 2014, 44(10): 1591-1598 (in Chinese).
[9]  吴强, 陈宇飞, 韩晶, 等. 纳米纤维素晶体-聚乙烯醇水凝胶的制备及性能表征[J].功能高分子学报, 2013, 26(3): 289-293. WU Qiang, CHEN Yufei, HAN jing, et al. Preparation and characterization of cellulose nanocrystal-poly(vinyl alcohol) hydrogel[J]. Journal of Functional Polymer, 2013, 26(3): 289-293 (in Chinese).
[10]  董伟, 刘宇光, 侯静, 等. 聚乙烯醇/淀粉复合水凝胶的辐射合成[J].化工新型材料, 2011, 39(10): 125-127. DONG Wei, LIU Yuguang, HOU Jing, et al. Radiation synthesis of composite hydrogel of poly(vinyl alcohol) and starch[J]. New Chemical Materials, 2011, 39(10): 125-127 (in Chinese).
[11]  YAO W, GENG C, HAN D, et al. Strong and conductive double-network graphene/PVA gel[J]. RSC Advances, 2014, 4(74): 39588-39595.
[12]  李坚, 李学锋, 龙世军, 等. 3D 成型 SiO2/聚乙烯醇水凝胶支架的摩擦行为[J]. 复合材料学报, 2016, 33(11): 2405-2411. LI Jian, LI Xuefeng, LONG Shijun, et al. Friction of SiO2/PVA hydrogel scaffold fabricated by 3D printing[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2405-2411 (in Chinese).
[13]  潘晓艳, 方斌, 陈长鑫. 环氧树脂/多壁碳纳米管导电复合材料研究[J]. 工程塑料应用, 2009(3): 18-22. PAN Xiaoyan, FANG Bin, CHEN Changxin. Study on epoxy/multi-walled carbon nanoatubes conductive composite[J]. Engineering Plastics Application, 2009(3): 18-22 (in Chinese).
[14]  张诚, 祝军, 马淳安. 聚合物/碳纳米管导电复合材料研究进展[J]. 浙江工业大学学报, 2010, 38(1): 1-6. ZHANG Cheng, ZHU Jun, MA Chunan. Research progress of polymer/carbon nanotubes conductive composites[J]. Journal of Zhejiang University of Technology, 2010, 38(1): 1-6 (in Chinese).
[15]  杨明成, 宋卫东, 张宏娜, 等. PNIPAM/碳纳米管复合水凝胶辐射合成与表征[J]. 核技术, 2011, 34(7): 517-521. YANG Mingcheng, SONG Weidong, ZHANG Hongn, et al. Radiation synthesis and characterization of PNIPAM/carbon nanotubes composite hydrogels[J]. Nuclear Techniques, 2011, 34(7): 517-521 (in Chinese).
[16]  许军, 栗建钢, 吴瑶, 等. 聚(3, 4-乙撑二氧噻吩)/多壁碳纳米管导电复合材料制备与性能[J]. 塑料, 2014, 43(2): 18-22. XU Jun, LI Jiangang, WU Yao, et al. Preparation and performance of poly (3, 4-ethylenedioxythiophene)/multi-walled carbon nanotubes conducting composite[J]. Plastics, 2014, 43(2): 18-22 (in Chinese).
[17]  XU Z, LI J, ZHOU H, et al. Morphological and swelling behavior of cellulose nanofiber (CNF)/poly(vinyl alcohol) (PVA) hydrogels: poly(ethylene glycol) (PEG) as porogen[J]. Rsc Advances, 2016, 6(49): 43626-43633.
[18]  AUTISSIER A, LE VISAGE C, POUZET C, et al. Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process[J]. Acta Biomate-rialia, 2010, 6(9): 3640-3648.
[19]  International Organization for Standardization. Rubber, vulcanized or thermoplastic-determination of tensile stress-strain properties: ISO 37: 2005(E)[S]. Switzerland: ISO Copyright Office, 2005.
[20]  TONG X, ZHENG J, LU Y, et al. Swelling and mechanical behaviors of carbon nanotube/poly(vinyl alcohol) hybrid hydrogels[J]. Materials Letters, 2007, 61(8): 1704-1706.
[21]  李明娟. 聚乙烯醇水凝胶的稳定性研究[D]. 北京: 北京理工大学, 2008. LI Mingjuan. Study on the stability of PVA hydrogel[D]. Beijing: Beijing Institute of Technology, 2008 (in Chinese).
[22]  胡孝丽, 冷卫东, 陈士龙, 等. 聚乙烯醇 (PVA) 水凝胶的制备[J]. 临床口腔医学杂志, 2013, 29(1): 23-25. HU Xiaoli, LENG Weidong, CHEN Shilong, et al. Study on preparation and performance of PVA hydrogel[J]. Journal of Clinical Stomatology, 2013, 29(1): 23-25 (in Chinese).
[23]  SANNINO A, NETTI P A, MENSITIERI G, et al. Designing microporous macromolecular hydrogels for biomedical applications: A comparison between two techniques[J]. Composites Science and Technology, 2003, 63(16): 2411-2416.
[24]  程亚玮, 李欢军, 张公正. 碳纳米管基聚合物水凝胶研究进展[J]. 中国科技论文, 2013, 8(9): 856-861. CHENG Yawei, LI Huanjun, ZHANG Gongzheng. Progress in carbon nanotube based polymeric hydrogels[J]. China Science Paper, 2013, 8(9): 856-861 (in Chinese).
[25]  狄莹莹, 任鹏刚, 张倩. 石墨烯-多壁碳纳米管/超高分子量聚乙烯导电复合材料的制备及性能[J]. 复合材料学报, 2012, 29(4): 36-41. DI Yingying, REN Penggang, ZHANG Qian. Segreated ultrahing molecular weight polyethylene composites filled with grapheme sheets and hybrid multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2012, 29(4): 36-41 (in Chinese).
[26]  SPILLER K L, LAURENCIN S J, CHARLTON D, et al. Superporous hydrogels for cartilage repair: Evaluation of the morphological and mechanical properties[J]. Acta Biomaterialia, 2008, 4(1): 17-25.
[27]  HUANG Y, ZHENG Y, SONG W, et al. Poly(vinyl pyrrolidone) wrapped multi-walled carbon nanotube/poly(vinyl alcohol) composite hydrogels[J]. Composites Part A: Applied Science & Manufacturing, 2011, 42(42): 1398-1405.
[28]  LIU D, SUN X, TIAN H, et al. Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites[J]. Cellulose, 2013, 20(6): 2981-2989.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133