全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

利用黏弹性发热的复合结构脱粘的超声振动热像检测
Vibrothermography of debondings in composite structures by using viscoelastic heating

DOI: 10.13801/j.cnki.fhclxb.20171213.001

Keywords: 无损检测,振动热像,脱粘,黏弹性热效应,热-力耦合
non-destructive testing
,vibrothermography,debonding,viscoelasticity thermal effect,thermo-mecha-nical coupling

Full-Text   Cite this paper   Add to My Lib

Abstract:

相对于光激励的红外热像检测而言超声激励的振动热像(VT)检测是一种新兴技术,其产热机制一直为广大学者所争论。聚焦于黏弹性发热,研究了非金属材料复合结构脱粘缺陷的VT检测。以铝合金-软木复合结构脱粘的VT检测为例,通过数值模拟和实验,对缺陷的温升规律进行了分析。理论计算和实验获得了相似的结果,表明非金属材料的黏弹性发热是脱粘处产热的主导因素。这一结论为金属-非金属复合结构的脱粘及树脂基复合材料分层的VT检测提供了理论依据。 Comparing with optical thermography, vibrothermography(VT) is a new technique.However, the heat generation mechanism of VT has not yet come to an agreement among scholars. The VT of debondings in nonmetallic composite structures was studied focusing on viscoelastic heat.Taking the VT of debonding in aluminum-cork composite structures as an example, the temperature rise patterns on the defects were analyzed by using numerical simulation and experiment. The theoretical results are consistent with the experimental results, and it illustrates that the viscoelastic heat of the nonmetallic material is the leading factor of heat generation at debonding.The conclusion provides a theoretical basis for the VT of debondings in metal-nonmetal composite structures, and delaminations in polymer composite materials. 国家自然科学基金(61571028;U1433122)

References

[1]  SHEPARD S M, TASDIQ A, LHOTA J R. Experimental considerations in vibro-thermography[J]. SPIE Thermosense, 2004, 5405(4):332-335.
[2]  ALEXANDER D, THOMAS Z, BUSSE G. Burst phase-angle thermography with elastic waves[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2002, 4710(1):572-577.
[3]  GUO X W, ZHANG N N. A phase sensitive modulated thermography of debondings in the insulator of SRMs[J]. Polymer Testing, 2017, 57:226-234.
[4]  MONTANINI R, FRENI F. Correlation between vibrational mode shapes and viscoelastic heat generation in vibrothermography[J]. NDT&E International, 2013, 58:43-48.
[5]  曹志远. 板壳振动理论[M]. 北京:中国铁道出版社, 1989. CAO Z Y. Vibration theory of plates and shells[M]. Beijing:China Railway Press, 1989(in Chinese).
[6]  常冠军. 黏弹性阻尼材料[M]. 北京:国防工业出版社, 2012:9-38. CHANG G J. Viscoelastic damping materials[M]. Beijing:National Defense Industry Press, 2012:9-38(in Chinese).
[7]  GANESAN R, MUTHUPANDIAN A. Simulation of heat generation from vibration in COMSOL multiphysics[M] Chennai:Edward Arnold, 2009:242-246.
[8]  JEBUR A K. Simulation of heat generating in a vibrating structural using COMSOL multiphysics[J]. Journal of Babylon University/Engineering Sciences, 2016, 1(24):216-227.
[9]  管和清, 郭兴旺, 马丰年. 铝合金梁裂纹振动红外热像检测的数值模拟[J]. 无损检测, 2016, 38(9):1-5. GUAN H Q, GUO X W, MA F N. Numerical simulation of vibrothermography testing of cracks in aluminum alloy beams[J]. Nondestructive Testing, 2016, 38(9):1-5(in Chinese).
[10]  李战慧, 吴运新, 隆志力. 超声换能器接触界面的非线性谐波[J]. 振动与冲击, 2010, 29(9):138-141, 248. LI Z H, WU Y X, LONG Z L. Nonlinearity harmonic at contact interface in ultrasonic transducers bonding system[J]. Journal of Vibration and Shock, 2010, 29(9):138-141, 248(in Chinese).
[11]  SOLODOV I, KORSHAK B. Instability, chaos and "memory" in acoustic wave crack interaction[J]. Physical Review Letters, 2001, 88(1):1-3.
[12]  SOLODOV I, WACKERL J, PFLEIDERER K, et al. Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location[J]. Applied Physics Letters, 2004, 84(26):5386-5388.
[13]  舒飏. 无缝钢管超声检测实验系统的研制与开发[D]. 杭州:浙江大学, 2006. SHU Y. R&D of ultrasonic testing experimental system for seamless steel tube[D]. Hangzhou:Zhejiang University, 2006(in Chinese).
[14]  伍树坤. 燃气用聚乙烯管热熔焊对接接头的X射线检测和超声波检测应用研究[D]. 广州:华南理工大学, 2014. WU S K. Research on X-radiographic test and ultrasonic test of the fusion-butt welds of polyethylene gas pipe[D]. Guangzhou:South China University of Technology, 2014(in Chinese).
[15]  HAN X, ISLAM M, NEWAZ G. Finite element modeling of the heating of cracks during sonic infrared imaging[J]. Journal of Applied Physics, 2006, 99(7):1-7.
[16]  RIZIA S, HEDAYATRASA S, MALDAGUEBX, et al. FEM modeling of ultrasonic vibrothermography of a damaged plate and qualitative study of heating mechanisms[J]. Infrared Physics & Technology, 2013, 61(5):101-110.
[17]  米小兵, 张淑仪. 超声红外热像技术中的微裂纹发热数值计算[J]. 声学技术, 2003, 22(s2):279-281. MI X B, ZHANG S Y. Numercial calculation of the heating generated by microcracks in ultrasonic infrared imaging[J]. Technical Acoustics, 2003, 22(s2):279-281(in Chinese).
[18]  张义同. 热黏弹性理论[M]. 天津:天津大学出版社, 2002:22-30. ZHANG Y T. Thermal viscoelasticity theory[M]. Tianjin:Tianjin University Press, 2002:22-30(in Chinese).
[19]  SOLODOV I, RAHAMMER M, DERUSOVA D. Highly-efficient and noncontact vibro-thermography via local defect resonance[J]. Quantitative Infrared Thermography Journal, 2015, 12(1):98-111.
[20]  BRINSON H, BRINSON L. Polymer engineering science and viscoelasticity:An introduction[M]. New York:Springer, 2014.
[21]  MILLER J K, WOODS D C, RHOADS J F. Thermal and mechanical response of particulate composite plates under inertial excitation[J]. Journal of Applied Physics, 2014, 116(24):9-25.
[22]  SINGIRESU S R. Vibration of continuous systems[M]. John Wiley & Sons, Inc, 2007:73-80.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133