|
- 2018
无压熔渗制备TiC/Ti3SiC2复合材料高速载流摩擦磨损性能
|
Abstract:
采用无压熔渗反应烧结技术制备了TiC/Ti3SiC2复合材料,通过HST-100型载流摩擦磨损试验机,在60~90 m/s滑动速度范围内,对TiC/Ti3SiC2复合材料的高速载流摩擦磨损性能进行了研究。结果表明:当与HSLA80配副时,TiC/Ti3SiC2的摩擦磨损性能与摩擦速度和TiC含量呈现出一定的相关性。当摩擦速度小于80 m/s时,摩擦表面出现具有减磨作用的熔融状态的均匀分布氧化膜(FeTiO3和Fe2.35Ti0.65O4),呈现山脊及犁沟状形貌,磨损机制以磨粒切削磨损、氧化磨损及粘着磨损为主;当摩擦速度超过80 m/s时,摩擦表面出现不均匀分布的氧化膜,呈现孤峰状形貌,磨损机制以氧化磨损及电弧烧蚀磨损为主。相同实验条件下,摩擦系数随着TiC含量的增加而增大,磨损率随之降低。 TiC/Ti3SiC2 composite material was prepared by infiltration sintering technology, the investigation was conducted on a HST-100 pin-on-disc friction and wear testing machine in the speed range of 60-90 m/s. The results show that the friction and wear behavior of TiC/Ti3SiC2 is closely related with the sliding speed and TiC content against HSLA80 pairs. When the sliding speed is slower than 80 m/s, the worn surface characterized by groove-ridge, Pan furrows and their combined to pography, uniform oxidation film (FeTiO3 and Fe2.35Ti0.65O4) will be formed on the surface, and the main wear mechanisms are abrasive wear, oxidation wear and adhesive wear. However, When the sliding speed is faster than 80 m/s, the worn surface characterized by isolated peak pattern, discontinuous and non-uniform oxidation film is formed. Wear mechanism is mainiy arc oxidation. Under the same experiment conditions, the coefficient of friction increases and the wear rate decreases with the content increase of TiC content. 国家自然科学基金(U1504505);信阳师范学院‘南湖学者奖励计划’青年项目(Nanhu Scholars Program for Young Scholars of XYNU)
[1] | 罗骥, 曹慧钦, 贾步超, 等. 新型铜基受电弓滑板材料的制备与性能[J]. 复合材料学报, 2012, 29(2):103-107. LUO Ji, CAO Huiqin, JIA Buchao, et al. Preparation and properties of the type copper matrix pantograph slider[J]. Acta Materiae Compositae Sinica, 2012, 29(2):103-107(in Chinese). |
[2] | DING T, CHEN G X, LI Y M, et al. Arc erosive characteristics of a carbon strip sliding against a copper contact wire in a high-speed electrified railway[J]. Tribology International, 2014, 79(3):8-15. |
[3] | CHEN G X, YANG H J, ZHANG W H, et al. Experimental study on arcablation occurring in a contact strip rubbing against a contact wire with electrical current[J]. Tribology International, 2013, 61(2):88-94. |
[4] | 马文林, 陆龙, 郭鸿儒, 等. Fe-Mo-石墨和Fe-Mo-Ni-石墨的高温摩擦磨损行为[J]. 摩擦学学报, 2013, 33(5):475-480. MA Wenlin, LU Long, GUO Hongru, et al. Tribological behavior of Fe-Mo-graphite and Fe-Mo-Ni-graphite compo-sites at elevated temperature[J]. Tribology, 2013, 33(5):475-480(in Chinese). |
[5] | 肖琪聃, 吕振林, 于源. 熔渗烧结Ti3SiC2陶瓷材料的摩擦磨损性能研究[J]. 摩擦学学报, 2010, 30(4):367-372. XIAO Qidan, LU Zhenlin, YU Yuan. Friction and wear characteristics of Ti3SiC2 by infiltration-sintering[J]. Tribology, 2010, 30(4):367-372(in Chinese). |
[6] | 王爱琴, 李敏, 谢敬佩. 新型自润滑YBa2Cu3O7/Cu复合材料的制备及性能[J]. 复合材料学报, 2016, 33(2):318-326. WANG Aiqin, LI Min, XIE Jingpei. Preparation and properties of new self-lubricant YBa2Cu3O7/Cu composites[J]. Acta Materiae Compositae Sinica, 2016, 33(2):318-326(in Chinese). |
[7] | 李长生, 郝茂德, 刘艳清, 等. NbSe2纤维的制各及其摩擦学行为[J]. 复合材料学报, 2008, 25(6):181-185. LI Changsheng, HAO Maode, LIU Yanqing, et al. Synthesized and tribological behavior of NbSe2 fibers[J]. Acta Materiae Compositae Sinica, 2008, 25(6):181-185(in Chinese). |
[8] | 肖琪聃, 吕振林, 李阳. 熔渗法制备Ti3SiC2材料及性能影响因素[J]. 西安交通大学学报, 2010, 44(5):56-59. XIAO Qidan, LU Zhenlin, LI Yang. Performance influence factors on Ti3SiC2 synthesized by infiltration-sintering technology[J]. Journal of Xi'an Jiaotong University, 2010, 44(5):56-59(in Chinese). |
[9] | 张永振, 朱均, 刘维民等. 不同滑动干摩擦条件下钢/铁摩擦副的摩擦磨损性能与表面形貌特征研究[J]. 摩擦学学报, 2001, 21(1):37-39. ZHANG Yongzhen, ZHU Jun, LIU Weimin, et al. Nvestigation of topographical characteristics and tribological behavior of compacted graphite iron in sliding against 40CrSteel under different dry sliding conditions[J]. Tribology, 2001, 21(1):37-39(in Chinese). |
[10] | LIU G H, LI J T. Effects of Si source and high gravity on combustion synthesis of Ti3SiC2 in air[J]. Advances in Applied Ceramics, 2012, 111(4):208-213. |
[11] | RICHARDS J C W, O'DONOVAN J B, HAUPTMAN Z, et al. A magnetic study of titanomagnetite substituted by magnesium and aluminium[J]. Physics of the Earth and Planetary Interiors, 1973, 7(4):437-444. |
[12] | 杨琳, 易茂中, 冉丽萍. C/C/Cu及C/Cu复合材料摩擦磨损行为比较[J]. 复合材料学报, 2009, 26(6):97-102. YANG Lin, YI Maozhong, RAN Liping. Comparative study of friction and wear behavior of C/C/Cu and C/Cu composites[J]. Acta Materiae Compositae Sinica, 2009, 26(6):97-102(in Chinese). |
[13] | ElSAEED M A, DEORSOLA F A, RASHAD R M. Optimization of the Ti3SiC2 MAX phase synthesis[J]. International Journal of Refractory Metals and Hard Materials, 2012, 35(3):127-131. |
[14] | XIAO Q D, LV Z L. Current carrying friction and wear characteristics of Ti3AlC2 by a novel method of infiltration-sintering[J]. Advances in Applied Ceramics, 2012, 111(4):202-207. |
[15] | 周文艳, 冉丽萍, 彭可, 等. Mo2C改性C/C-Cu复合材料的组织及载流摩擦磨损性能[J]. 复合材料学报, 2016, 33(9):2074-2081. ZHOU Wenyan, RAN Lipin, PENG Ke, et al. Structure and tribological property with electric current of Mo2C modified C/C-Cu composites[J]. Acta Materiae Compositae Sinica, 2016, 33(9):2074-2081(in Chinese). |
[16] | 马云双, 刘志刚, 闻映红, 等. 高速动车组车速对弓网离线电弧放电的影响[J]. 北京交通大学学报, 2013, 37(2):99-103. MA Yunshuang, LIU Zhigang, WEN Yinghong, et al. Effect of vehicle speed on pantograph arc discharge for high speed EMU[J]. Journal of Beijing Jiaotong University, 2013, 37(2):99-103(in Chinese). |
[17] | LO W, NAYAK P K, LA H, et al. Evolution of binary phase TiC/Ti3SiC2 composites from TiC/Ti/Si by hot-pressed reactive sintering[J]. Materials Science and Engineering B, 2010, 172(1):18-23. |
[18] | TIAN W B, SUN Z M, HASHIMOTO H, et al. Synthesis microstructure and mechanical properties of TiC/Ti3SiC2 composites pulse discharge sintered from Ti/Si/TiC powder mixture[J]. Materials Science and Engineering A, 2009, 526(1-2):16-21. |
[19] | 贾换, 尹洪峰, 袁蝴蝶, 等. TiC/Ti3SiC2复合材料的制备及其性能研究[J]. 兵器材料科学与工程, 2012, 35(6):45-47. JIA Huan, YIN Hongfeng, YUAN Hudie, et al. Preparation and properties of TiC/Ti3SiC2 composites[J]. Ordnance Material Science and Engineering, 2012, 35(6):45-47(in Chinese). |
[20] | HE X D, BAI Y, LI Y, et al. In situ synthesis and mechanical properties of bulk TiC/Ti3SiC2 composites by SHS/PHIP[J]. Materials Science and Engineering A, 2010, 527(18-19):4554-4559. |
[21] | 袁华. 碳纤维增强受电弓滑板的制备与性能及摩擦磨损机理的研究[D]. 济南:山东大学, 2013. YUAN Hua. Preparation and performance and anti-wear mechanism of carbonfiber reinforced contact strip[D]. Ji'nan:Shandong University, 2013(in Chinese). |
[22] | 霍生伟, 李长生, 唐华, 等. NbSe2/Cu新型自润滑复合材料制备及其摩擦学性能[J]. 复合材料学报, 2013, 30(4):121-123. HUO Shengwei, LI Changsheng, TANG Hua, et al. Preparation and tribological composites properties of copper matrix solid self-lubricant reinforced with NbSe2 sheets[J]. Acta Materiae Compositae Sinica, 2013, 30(4):121-123(in Chinese). |
[23] | 刘明. 原位合成Ti5Si3基复合材料及其性能研究[D]. 哈尔滨:哈尔滨工程大学, 2012. LIU Ming. Synthesis and properties of Ti5Si3 matrix in-situ composites[D]. Harbin:Harbin Engineering University, 2012(in Chinese). |
[24] | 石佳佳, 付志强, 岳文, 等. 电弧离子渗钛对316L不锈钢摩擦学性能的影响[J]. 稀有金属材料与工程, 2016, 45(7):1821-1825. SHI Jiajia, FU Zhiqiang, YUE Wen, et al. Influence of cathodic arc plasma titanizing on tribological properties of 316L stainless steel[J]. Rare Metal Materials and Engineering, 2016, 45(7):1821-1825(in Chinese). |
[25] | 任维佳, 王献辉, 张苗, 等. 不同Sn02含量的Ag-Sn02触头材料电弧侵蚀行为[J]. 稀有金属材料与工程, 2016, 45(8):2075-2079. REN Weijia, WANG Xianhui, ZHANG Miao, et al. Arcerosion behavior of Ag-Sn02 contact materials with different Sn02 contents[J]. Rare Metal Materials and Engineering, 2016, 45(8):2075-2079(in Chinese). |