|
- 2018
玻璃纤维/聚丙烯复合材料层合板拉深成型性
|
Abstract:
为研究纤维增强树脂复合材料零部件快速成型,加速复合材料零部件大规模产业化量产,以玻璃纤维/聚丙烯复合材料层合板为实验对象,首先利用设计加工的拉深成型模具,进行了玻璃纤维增强热塑性树脂复合材料(Glass fiber reinforced thermoplastic resin composite,GFRTP)板材外表面纤维方向和模具长轴方向为0°和90°的试件在不同温度和不同拉深深度条件下的深拉深成型实验,将成型件制备金相试件在光学显微镜下进行微观组织观察,并对试件的成型情况和不同拉深力-行程曲线进行分析。其后进行了GFRTP板材外表面纤维方向和模具长轴方向为0°、45°和90°的试件的不同温度下的浅拉深成型实验,并对成型后的试验件进行了室温条件下的拉伸性能测试,对其拉伸失效情况及具体力学性能进行了对比分析。试验结果表明,在室温25℃到基体树脂的熔融温度165℃之间,随着温度的升高,板材的极限拉深深度增大,最大拉深力呈下降趋势。在选取的试验温度范围内,85℃时试件成型性能较好且0°试件优于90°试件,温度对拉深成型试件的皱曲改善不明显。浅拉深成型试件拉伸力学特性受试件铺层纤维方向的影响较大,防止皱曲等缺陷的发生对GFRTP板材拉深成型十分重要。 In order to research the rapid prototyping of fiber reinforced composite parts and accelerate large-scale industrial mass production of composite parts, glass fiber/polypropylene composite laminate was selected to be the experimental object. First, the deep drawing test of glass fiber reinforced thermoplastic resin composite (GFRTP), the outer surface fiber orientation of the sheet and in the long axis direction of 0° and 90° at different temperatures were carried out by using the deep drawing mold. Metallographic specimens were prepared by microstructure observation under a light microscope. The molding of the specimen and the different drawing force-stroke curve were analyzed. The shallow drawing test of the GFRTP along the fiber direction of sheet surface and the direction of the long axis of the mold 0°, 45° and 90° at different temperatures was carried out. Tensile properties were tested at room temperature using the molded test piece. The tensile failure and the specific mechanical properties were compared and analyzed. The results show that, between room temperature of 25℃ and the base resin melting temperature of 165℃, the ultimate drawing depth of the plate increases with the increase of the temperature, and the maximum drawing force decreases.In the range of the selected test temperature, the formability of the specimen at 85℃ is better and the specimen at 0° is better than the specimen at 90°. The temperature does not improve the wrinkle of the specimen.The tensile mechanical properties of the specimen are greatly affected by the direction of the laying fiber of the specimen, and it is very important to prevent the occurrence of defects such as wrinkles. 留学人员科技活动择优资助项目(CG2016003001)
[1] | WANG P, HAMILA N, BOISSE P. Thermoforming simulation of multilayer composites with continuous fibres and thermoplastic matrix[J]. Key Engineering Materials, 2014, 611-612(9):368-374. |
[2] | LIANG B, HAMILA N, PEILLON M, et al. Analysis of thermoplastic prepreg bending stiffness during manufacturing and of its influence on wrinkling simulations[J]. Composites Part A:Applied Science & Manufacturing, 2014, 67(67):111-122. |
[3] | 张琦, 高强, 赵升吨. 碳纤维复合材料板热冲压成形试验研究[J]. 机械工程学报, 2012, 48(18):72-77. ZHANG Q, GAO Q, ZHAO S D. Thermostamping experimental study on carbon fiber composite sheet[J]. Journal of Mechanical Engineering, 2012, 48(18):72-77(in Chinese). |
[4] | ZHANG Q, GAO Q, CAI J. Experimental and simulation research on thermal stamping of carbon fiber composite sheet[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(1):217-223. |
[5] | 刘娇. 连续玻璃纤维增强超高分子量聚乙烯复合材料的制备与性能研究[D]. 天津:天津工业大学, 2015:27-38. LIU J. Preparation and properties of continuous glass fiber reinforced ultrahigh molecular weight polyethylene compo-sites[D]. Tianjin:Tianjin Polytechnic University, 2015:27-38(in Chinese). |
[6] | 陈旭清. 连续碳纤维增强聚苯硫醚层压复合材料制备及性能研究[D]. 上海:华东理工大学, 2013:12-34. CHEN X Q. Preparation and properties of continuous carbon fiber reinforced polyphenylene sulfide laminated composites[D]. Shanghai:East China University of Science and Technology, 2013:12-34(in Chinese). |
[7] | JAUFFRèS D, SHERWOOD J A, MORRIS C D, et al. Discrete mesoscopic modeling for the simulation of woven-fabric reinforcement forming[J]. International Journal of Material Forming, 2010, 3(2):1205-1216. |
[8] | LI X K, BAI S L. Sheet forming of the multi-layered biaxial weft knitted fabric reinforcement. Part I:On hemispherical surfaces[J]. Composites Part A:Applied Science & Manufacturing, 2009, 40(6-7):766-777. |
[9] | KHAN M A, MABROUKI T, VIDAL-SALLé E, et al. Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark[J]. Journal of Materials Processing Technology, 2010, 210(2):378-388. |
[10] | PENG X, DING F. Validation of a non-orthogonal constitutive model for woven composite fabrics via hemispherical stamping simulation[J]. Acta Materiae Compositae Sinica, 2011, 42(4):400-407. |
[11] | BOISSE P, HAMILA N, VIDAL-SALLé E, et al. Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses[J]. Composites Science & Technology, 2011, 71(5):683-692. |
[12] | CARVELLI V, PAZMINO J, LOMOV S V, et al. Deformability of a non-crimp 3D orthogonal weave E-glass composite reinforcement[J]. Composites Science & Technology, 2012, 73(1):9-18. |
[13] | 刘万双, 魏毅, 余木火. 汽车轻量化用碳纤维复合材料国内外应用现状[J]. 纺织导报, 2016(5):48-52. LIU W S, WEI Y, YU M H. Current situations of carbon fiber reinforced composites used for lightweighting of automobile at home and abroad[J]. China Textile Leader, 2016(5):48-52(in Chinese). |
[14] | 董永棋. 热塑性复合材料冲压成型技术的近况及趋势[J]. 纤维复合材料, 1989(3):8-11. DONG Y Q. Recent status and trend of stamping technology for thermoplastic composites[J]. Fiber Composites, 1989(3):8-11(in Chinese). |
[15] | VIEILLE B, AUCHER J, TALEB L. Influence of temperature on the behavior of carbon fiber fabrics reinforced PPS laminates[J]. Materials Science & Engineering A, 2009, 517(1-2):51-60. |
[16] | ROBERT M, ROY R, BENMOKRANE B. Environmental effects on glass fiber reinforced polypropylene thermoplastic composite laminate for structural applications[J]. Polymer Composites, 2009, 31(4):604-611. |
[17] | ALLAOUI S, BOISSE P, CHATEL S, et al. Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape[J]. Composites Part A:Applied Science & Manufacturing, 2011, 42(6):612-622. |
[18] | ALLAOUI S, HIVET G, SOULAT D, et al. Experimental preforming of highly double curved shapes with a case corner using an interlock reinforcement[J]. International Journal of Material Forming, 2014, 7(2):155-165. |
[19] | WANG P, LEGRAND X, BOISSE P, et al. Experimental and numerical analyses of manufacturing process of a composite square box part:Compparison between textile reinforcement forming and surface 3D weaving[J]. Composites Part B:Engineering, 2015, 78:26-34. |
[20] | 何能, 刘建强. 聚丙烯塑料的应用与加工[J]. 硫酸工业, 1982(2):9-10. HE N, LIU J Q. Application and processing of polypropylene plastics[J]. Sulfuric Acid Industry, 1982(2):9-10(in Chinese). |