|
- 2018
TiO2对琼胶-κ-卡拉胶膜性能的影响
|
Abstract:
采用热铸法,制备了琼胶膜、κ-卡拉胶膜及其两者的共混膜,并在共混膜中添加质量分数为0.8%的TiO2粉末,制得TiO2/琼胶-κ-卡拉胶复合膜。对这4种膜的SEM、XRD、力学性能、透光率、不透明度和对水的阻抗性进行测试。结果表明:琼胶-κ-卡拉胶膜的力学性能、透光率、不透明度和对水的阻抗性均介于琼胶膜和κ-卡拉胶膜之间,琼胶和κ-卡拉胶之间有良好的共混性,并且在共混膜中形成了分子间作用力。TiO2/琼胶-κ-卡拉胶复合膜的拉伸强度(45.44 MPa)比其他3种膜的拉伸强度都大,其中比琼胶-κ-卡拉胶膜的拉伸强度(31.06 MPa)提高46.30%,但断裂伸长率(15.73%)却比其他3种膜的都低,TiO2与复合膜基质分子间形成强相互作用力,增强复合膜的拉伸强度;在相同波长下,TiO2/琼胶-κ-卡拉胶复合膜的透光率比其他3种膜都低,在200~400 nm的紫外光区,TiO2/琼胶-κ-卡拉胶复合膜的透光率明显低于其他3种膜,添加TiO2的复合膜对紫外光有显著的屏蔽作用,但在600 nm波长处,不透明度(0.96)比其他3种膜都高;TiO2/琼胶-κ-卡拉胶复合膜对水的阻抗性高于琼胶-κ-卡拉胶膜。 Agar films, κ-carrageenan films and their blend films were prepared by thermal casting method, and 0.8%(0.8 g/100 g total dry matter) TiO2 powders were added into the blend films to obtain TiO2/agar-κ-carrageenan composite films. The four kinds films were tested by SEM, XRD, mechanical properties, light transmittance, opacity and resistance to water. The results show that the mechanical properties, light transmittance, opacity and resistance to water of agar-κ-carrageenan films are between agar films and κ-carrageenan films. Agar and κ-carrageenan have the good blending and the intermolecular forces are formed in the blend films. The tensile strength of TiO2/agar-κ-carrageenan composite films is 45.44 MPa which is higher than that of the other three films and increases 46.30% compared with the tensile strength (31.06 MPa) of agar-κ-carrageenan films. But the breaking elongation is 15.73% which is smaller than that of the other three films. The strong interaction forces are formed between matrix molecule of composite films and TiO2. So the tensile strength of the composite films is enhanced. At the same wavelength, the light transmittance of TiO2/agar-κ-carrageenan composite films is the lowest. In the ultraviolet region of 200-400 nm, the light transmittance of TiO2/agar-κ-carrageenan composite films is obviously lower than that of the other three films. TiO2/agar-κ-carrageenan composite films have a significant shielding effect on UV light. But at the 600 nm wavelength, the opacity of TiO2/agar-κ-carrageenan composite films is 0.96 which is the highest of the four films. The resistance to water of TiO2/agar-κ-carrageenan composite films is higher than agar-κ-carrageenan films. 国家自然科学基金(50803030);博士后基金(201104581;20100471495);长江学者和创新团队发展计划项目(IRT0970)
[1] | VITOR D A, NUNO C, ISABEL M C. Barrier properties of biodegradable composite films based on kappa-carrageenan/pectin blends and mica flake[J]. Carbohydrate Polymers, 2010, 79(2):269-276. |
[2] | YANG M, XIA Y, WANG Y, et al. Preparation and property investigation of crosslinked alginate/silicon dioxide nanocomposite films[J]. Journal of Applied Polymer Science, 2016, 133(22):43489. |
[3] | FREILE-PELEGR N Y, MADERA-SANTANA T, ROBLEDO D, et al. Degradation of agar films in a humid tropical climate:Thermal, mechanical, morphological and structural changes[J]. Polymer Degradation and Stability, 2007, 92(2):244-252. |
[4] | 周正光, 汪东风, 吴琼, 等. 海藻酸钠添加量对琼胶-结冷胶复合膜性能的影响[J]. 中国海洋大学学报(自然科学版), 2014, 44(8):61-64, 88. ZHOU Zhengguang, WANG Dongfeng, WU Qiong, et al. Effects of sodium alginate on agar-gellan composite films[J]. Periodical of Ocean University of China(Natural Science Edition), 2014, 44(8):61-64, 88(in Chinese). |
[5] | ARFAT Y A, AHMED J, JACOB H. Preparation and characterization of agar-based nanocomposite, films reinforced with bimetallic (Ag-Cu) alloy nanoparticles[J]. Carbohydrate Polymers, 2017, 155:382-390. |
[6] | YOO S, KROCHTA J M. Whey protein-polysaccharide blended edible film formation and barrier, tensile, thermal and transparency properties[J]. Journal of the Science of Food and Agriculture, 2011, 91(14):2628-2836. |
[7] | BRINDLE L P, KROCHTA J M. Physical properties of whey protein-hydroxypropyl methylcellulose blend edible films[J]. Journal of Food Science, 2008, 73(9):E446-E454. |
[8] | RHIM J W. Physical-mechanical properties of agar-κ-carrageenan blend film and derived clay nanocomposite film[J]. Journal of Food Science, 2012, 77(12):N66-N73. |
[9] | 薛志欣, 杨桂朋, 王广策. 龙须菜琼胶多糖的提取、纯化与性能表征[J]. 食品科学, 2007, 28(8):174-177. XUE Zhixin, YANG Guipeng, WANG Guangce. Isolation, purification and characterization of agar polysaccharide from gracilaria lemaneiformis[J]. Food Science, 2007, 28(8):174-177(in Chinese). |
[10] | LABROPOULOSN K C, NIESZ D E, DANFORTH S C, et al. Dynamic rheology of agar gels:Theory and experiments. Part Ⅰ:Development of a rheological model[J]. Carbohydrate Polymers, 2002, 50:393-406. |
[11] | GARRIDO T, ETXABIDE A, GUERRERO P, et al. Characterization of agar/soy protein biocomposite films:Effect of agar on the extruded pellets and compression moulded films[J]. Carbohydrate Polymers, 2016, 151:408-416. |
[12] | ATEF M, REZAEI M, BEHROOZ R. Preparation and characterization agar-based nanocomposite film reinforced by nanocrystalline cellulose[J]. International Journal of Biological Macromolecules, 2014, 70(8):537-544. |
[13] | CAO Q, ZHANG Y, CHEN W, et al. Hydrophobicity and physicochemical properties of agarose film as affected by chitosan addition[J]. International Journal of Biological Macromolecules, 2017, 106:1307-1313. |
[14] | GIMéNEZ B, L PEZóDE LACEY A, PéREZ-SANT N E, et al. Release of active compounds from agar and agar-gelatin films with green tea extract[J]. Food Hydrocolloids, 2013, 30(1):264-271. |
[15] | MALAGURSKI I, LEVIC S, NESIC A, et al. Mineralized agar-based nanocomposite films:Potential food packaging materials with antimicrobial properties[J]. Carbohydrate Polymers, 2017, 175:55-62. |
[16] | AM I B, MAR N K, AR R, et al. Effects of plasticizers on the physicochemical properties of kappa-carrageenan films extracted from Eucheuma cottonii[J]. International Journal of Biological Macromolecules, 2017, 103:721-732. |
[17] | RHIM J W. Effect of PLA lamination on performance characteristics of agar-κ-carrageenan/clay bio-nanocomposite film[J]. Food Research International, 2013, 51(2):714-722. |
[18] | RHIM J W, WANG L F. Mechanical and water barrier properties of agar-κ-carrageenan/konjac glucomannan ternary blend biohydrogel films[J]. Carbohydrate Polymers, 2013, 96(1):71-81. |
[19] | 李丽霞, 曹兵, 李鸿雁, 等. 纳米TiO2-LDPE复合材料包膜控释肥残膜的降解特性[J]. 复合材料学报, 2014, 31(6):1422-1427. LI Lixia, CAO Bing, LI Hongyan, et al. Degradation behavior of residual films of controlled release fertilizers with nano-TiO2-LDPE composites[J]. Acta Materiae Compositae Sinica, 2014, 31(6):1422-1427(in Chinese). |
[20] | VEJDAN A, OJAGH S M, ADELI A, et al. Effect of TiO2 nanoparticles on the physico-mechanical and ultraviolet light barrier properties of fish gelatin/agar bilayer film[J]. LWT-Food Science and Technology, 2016, 71:88-95. |
[21] | MOHAJER S, REZAEI M, HOSSEINI S F. Physico-chemical and microstructural properties of fish gelatin/agar bio-based blend films[J]. Carbohydrate Polymers, 2017, 157:784-793. |
[22] | 左萍萍, 张玉龙, 冯华峰, 等. 氧化石墨烯增强卡拉胶复合膜的制备与性能[J]. 高等学校化学学报, 2013, 34(3):692-697. ZUO Pingping, ZHANG Yulong, FENG Huafeng, et al. Fabrication and properties of graphene oxide-reinforced carrageenan film[J]. Chemical Journal of Chinese Universities, 2013, 34(3):692-697(in Chinese). |
[23] | ZHANG W, XUE Z, YAN M, et al. Effect of epichlorohydrin on the wet spinning of carrageenan fibers under optimal parameter conditions[J]. Carbohydrate Polymers, 2016, 150:232-240. |
[24] | XU J B, BARTLEY J P, JOHNSON R A. Preparation and characterization of alginate-carrageenan hydrogel films crosslinked using a water-soluble carbodiimide (WSC)[J]. Journal of Membrane Science, 2003, 218(1-2):131-146. |
[25] | TUNC S, ANGELLIER H, CAHYANA Y, et al. Functional properties of wheat gluten/montmorillonite nanocomposite films processed by casting[J]. Journal of Membrane Science, 2007, 289(1-2):159-168. |