|
- 2018
棉花纤维增强冰弹对复合材料层合板冰撞动响应的影响
|
Abstract:
当前研究表明自然界冰雹比纯净冰的密度低、强度高,为此ASTM F320-10标准中要求,在实施航空结构抗冰撞试验时,人工模拟冰弹中需添加棉花纤维,以更真实呈现自然界冰雹的力学特性。为研究复合材料蒙皮结构遭受自然界冰雹后的损伤特性,采用80 mm口径气炮装置,开展纤维增强冰弹撞击刚性靶板和复合材料层合板试验。结果表明:冻结温度对冰弹力学性能几乎无影响;棉花纤维的加入显著提高了冰弹的模量和断裂强度;在中低速度范围内,复合材料层合板分层损伤面积随纤维增强冰弹的冲击速度及层合板铺层方式变化,而相同速度范围内受纯净冰弹冲击的层合板未出现分层损伤。 Current studies show that nature hail is less dense and tougher than clear ice, and cotton fibers are required to add to the simulated hail ice during the hail impact test on aeronautic structure saccording to ASTM F320-10, so as to accurately recurrent the mechanism properties of nature hail. To obtain the natural hail impact damage on composite skins, cotton fibers reinforced simulated hail ice impact tests on the rigid surface and composite panels were tested with the 80 mm caliber gas gun. The results show almost no influence of the freezing temperature on impact load peak. The elastic module and break strength of the simulated hail ice are of distinct enhancement, with the addition of cotton fibers. Delamination areas of composite panels are impacted by cotton-simulated hail ice vary with the velocity and stacking sequences, while no delamination is found for clear-simulated hail ice. 航空科学基金项目(2016ZA23005);机械结构强度与振动国家重点实验室开放课题(SV2017-KF-12)
[1] | ARIAS á, LóPEZ-PUENTE J, LOYA J A, et al. Analysis of high-speed impact problems in the aircraft industry[M]//Constitutive Relations Under Impact Loadings. Vienna:Springer, 2014:137-207. |
[2] | KEUNE J N. Development of a hail ice impact model and the dynamic compressive strength properties of ice[D]. West Lafayette:Purdue University, 2004. |
[3] | 刘洋, 王富生, 岳珠峰. 冰雹冲击复合材料层合板失效模式分析与数值模拟[J]. 振动与冲击, 2011, 30(9):150-154. LIU Yang, WANG Fusheng, YUE Zhufeng. Failure model analysis and simulation of laminated composite plate under hailstone impacting[J]. Journal of Vibration and Shock, 2011, 30(9):150-154(in Chinese). |
[4] | 汪洋. 高速冰雹撞击碳纤维增强复合材料层合板研究[D]. 西安:西北工业大学, 2012. WANG Yang. High-speed hail impact on carbon fiber reinforced composite laminates[D]. Xi'an:Northwestern Polytechnical University, 2012(in Chinese). |
[5] | 宋振华. 冰载荷作用下碳纤维复合材料桁条加筋曲面板的冲击动力响应研究[D]. 广州:暨南大学, 2014. SONG Zhenhua. The dynamic response of stringer-stiffened curved composite panels under the hail ice impact[D]. Guangzhou:Ji'nan University, 2014(in Chinese). |
[6] | 张晓晴, 丁铁, 龙舒畅, 等. 复合材料加筋壁板的抗冰雹冲击动力响应及损伤预测[J]. 华南理工大学学报:自然科学版, 2017, 45(5):120-128. ZHANG Xiaoqing, DING Tie, LONG Shuchang, et al. Dynamic response and damage prediction of composite stiffened panel under hail impact[J]. Journal of South China University of Technology:Natural Science Edition, 2017, 45(5):120-128(in Chinese). |
[7] | ASTM. Standard test method for hail impact resistance of aerospace transparent enclosures:ASTM F320-10[S]. West Conshohocken:ASTM International, 2010. |
[8] | SWIFT J. Simulated hail ice mechanical properties and failure mechanism at quasi-static strain rates[D]. Washington:University of Washington, 2013. |
[9] | GONZáLEZ E V, MAIMí P, CAMANHO P P, et al. Effects of ply clustering in laminated composite plates under low-velocity impact loading[J]. Composites Science and Technology, 2011, 71(6):805-817. |
[10] | 邵青, 何宇廷, 张腾, 等. 复合材料加筋板低速冲击损伤及剩余压缩强度试验研究[J]. 复合材料学报, 2014, 31(1):200-206. SHAO Qing, HE Yuting, ZHANG Teng, et al. Experimental research on low-velocity impact and residual compressive strength of composite stiffened panels[J]. Acta Materiae Compositae Sinica, 2014, 31(1):200-206(in Chinese). |
[11] | 王念. 复合材料层合板冲击损伤及损伤容限研究[D]. 南京:南京航空航天大学, 2014. WANG Nian. Research on impact damage and damage tolerance of composites laminates[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese). |
[12] | DEMPSEY J P, ADAMSON R M, MULMULE S V. Scale effects on the in-situ tensile strength and fracture of ice[J]. International Journal of Fracture, 1999, 95(1-4):347-366. |
[13] | KIM H, KEUNE J N. Compressive strength of ice at impact strain rates[J]. Journal of Materials Science, 2007, 42:2802-2806. |
[14] | TIPPMANN J D, KIM H, RHYMER J D. Experimentally validated strain rate dependent material model for spherical ice impact simulation[J]. International Journal of Impact Engineering, 2013, 57(7):43-54. |
[15] | KIM H, WELCH D A, KEDWARD K T. Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels[J]. Composites Part A:Applied Science and Manufacturing, 2003, 34(1):25-41. |
[16] | 范玉青, 张丽华. 超大型复合材料机体部件应用技术的新进展[J]. 航空学报, 2009, 30(3):541-542. FAN Yuqing, ZHANG Lihua. New development of extra large composite aircraft components application technology[J]. Acta Aeronauticaet Astronautica Sinica, 2009, 30(3):541-542(in Chinese). |
[17] | FAA Advisory Circular. Composite aircraft structures:AC20-107B[S]. Washington:Federal Aviation Administration, 2009. |
[18] | 中国民用航空局. 运输类飞机适航标准:CCAR-25-R4[S]. 北京:中国民用航空局, 2011. China Civil Aviation Administration. Transport airworthiness standard:CCAR-25-R4[S]. Beijing:Civil Aviation Administration of China, 2011(in Chinese). |
[19] | CURRIER J H, SCHULSON E M. The tensile-strength of ice as a function of grain-size[J]. Acta Metallurgica, 1982, 30(8):1511-1514. |
[20] | 张鹏飞. 铺层顺序对复合材料层合板冲击损伤阻抗性能的影响研究[D]. 南京:南京航空航天大学, 2012. ZHANG Pengfei. Effects of stacking sequence on impact damage resistance of composite laminates[J]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese). |