|
- 2017
表面多孔NiTi-羟基磷灰石/NiTi生物复合材料的制备与性能
|
Abstract:
利用放电等离子烧结技术制备了表面多孔NiTi-羟基磷灰石(HA)/NiTi生物复合材料,研究了烧结温度对复合材料宏观形貌、微观结构、表面孔隙特征、力学性能及体外生物活性的影响。结果表明:随着烧结温度从800℃提高到950℃,NiTi-HA/NiTi复合材料由复杂的Ti、Ni、Ti2Ni、Ni3Ti、HA混合相逐渐转变为单一的NiTi+HA相,内外层界面形成稳定的冶金结合且表面孔隙率与平均孔径呈缓慢减小趋势;同时抗压强度显著提高而弹性模量变化不明显。与传统NiTi、多孔NiTi及多孔NiTi-HA材料相比,950℃温度下制备的NiTi-HA/NiTi复合材料不仅具有良好的界面结合和表面孔隙特征(孔隙率45.6%、平均孔径393 μm)、较高的抗压强度(1 301 MPa)、较低的弹性模量(10.2 GPa)以及优异的超弹性行为(超弹性恢复应变>4%)的最佳匹配,而且还具有良好的体外生物活性。 Surface porous NiTi-Hydroxyapatite(HA)/NiTi biocomposites were prepared by spark plasma sintering (SPS) technology. The effects of different sintering temperatures on the macroscopic morphology, microstructure, surface pore characteristics, mechanical properties and in vitro biological activity of the composites were investigated. The results show that the NiTi-HA/NiTi biocomposites are consisted of complex Ti, Ni, Ti2Ni, Ni3Ti, HA mixed phase and gradually transformed into a single NiTi+HA phase with increasing of sintering temperatures form 800℃ to 950℃. Furthermore, a stable metallurgical bonding on the internal and external interface of the composites can be observed. Meanwhile, the porosity and average pore size of surface layer are in a slowly decreasing trend. As a result, compressive strength of the composites is significantly increased, but compressive elastic modulus of the composites is changed not obvious. Compared with NiTi, porous NiTi and porous NiTi-HA, NiTi-HA/NiTi biocomposites sintered at 950℃ not only exhibits a best match with better interface bonding, good surface pore characteristics (45.6% porosity as well as 393 μm average pore size), higher compressive strength (1 301 MPa), lower the compressive elastic modulus (10.2 GPa) and excellent superelastic recovery strain (>4%), but also showes a good in vitro biological activity. 国家自然科学基金(31660262);云南省教育厅科学研究基金(2016ZZX049)
[1] | CHEN Q, THOUAS G A. Metallic implant biomaterials[R]. Materials Science and Engineering, 2015, 87: 1-57. |
[2] | XU J, JIN X, LUO J, et al. Fabrication and properties of porous NiTi alloys by microwave sintering for biomedical applications[J]. Materials Letters, 2014, 124: 110-112. |
[3] | BANSIDDHI A, SARGEANT T, STUPP S, et al. Porous NiTi for bone implants[R]. Acta Biomaterialia, 2008, 4(4): 773-782. |
[4] | RYAN G, PANDIT A, APATSLDIS D P, et al. Fabrication methods of porous metals for use in orthopedic applications[J]. Biomaterials, 2006, 27(13): 2651-2670. |
[5] | 黄亦成, 宓蓉.镍钛合金在医疗领域应用研究进展[J]. 生物医学工程学进展, 2015, 36(03): 169-172. HUANG Y C, MI R. Research progress of nitinol alloy in application of medical field[J]. Progress in Biomedical Engineering, 2015, 36(03): 169-172 (in Chinese). |
[6] | 宋子豪, 孙耀宁, 徐国强. Ti-HA-BaTiO3生物复合材料的制备与性能[J]. 复合材料学报, 2015, 32(6): 1800-1806. SONG Z H, SUN Y N, XU G Q. Preparation and properties of Ti-HA-BaTiO3 bio-composites[J]. Acta Materiae Compo-sitae Sinica, 2015, 32(6): 1800-1806 (in Chinese). |
[7] | BASSANI P, PANSERI S, RUFFNI A, et al. Porous NiTi shape memory alloys produced by SHS: Microstructure and biocompatibility in comparison with Ti2Ni and TiNi3[J]. Journal of Materials Science: Materials in Medicine, 2014, 25(10): 2277-2285. |
[8] | ZHANG X X, HOU H W, WEI L S, et al. High damping capacity in porous NiTi alloy with bimodal pore architecture[J].Journal of Alloys and Compounds, 2013, 550: 297-301. |
[9] | KIM S W, JUNG H D, KANG M H, et al. Fabrication of porous titanium scaffold with controlled porous structure and net-shape using magnesium as spacer[J].Materials Science and Engineering, 2013, 33: 2808-2815. |
[10] | ZHANG L, HE Z Y, ZHANG Y Q, et al. Enhanced in vitro bioactivity of porous NiTi-HA composites with interconnected pore characteristics prepared by spark plasma sintering[J]. Materials & Design, 2016, 101: 170-180. |
[11] | Standard test methods of compression testing of metallic materials at room temperature: ASTM E9—89a[S]. West Conshohocken: ASTM International, 2000. |
[12] | LI D, ZHANG Y, EGGELER G, et al. High porosity and high-strength porous NiTi shape memory alloys with controllable pore characteristics[J]. Journal of Alloys and Compounds, 2009, 470: 1-5. |
[13] | TORRES Y, LASCANO S, BRIS J, et al. Development of porous titanium for biomedical applications: A comparison between loose sintering and space-holder techniques[J].Materials Science and Engineering: C, 2014, 37:148-155. |
[14] | LEE J, HWANG J, LEE D J, et al. Enhanced mechanical properties of spark plasma sintered NiTi composites reinforced with carbon nanotubes[J].Journal of Alloys and Compounds, 2014, 617: 505-510. |
[15] | LI H, YUAN B, GAO Y, et al. High-porosity NiTi superelastic alloys fabricated by low-pressure sintering using titanium hydride as pore-forming agent[J]. Journal of Materials Science, 2009, 44(3): 875-881. |
[16] | GIBSON L J, ASHBY M F. Cellular solids:Structure and properties[M]. Cambridge University Press, 1997. |
[17] | WEGRZYN J, KAUFMAN K R, HANSSEN A D, et al. Performance of porous tantalum vs. titanium cup in total hip arthroplasty: Randomized trial with minimum 10-year follow-up[J].The Journal of Arthroplasty, 2015, 30(6): 1008-1013. |
[18] | RHALMI S, ODIN M, ASSAD M, et al. Soft tissue and in vitro cell response to porous nickel-titanium: A biocompatibility evaluation[J].Bio-medical Material and Engineering, 1999, 9(3): 151-162. |