|
- 2017
尿素改性对钠离子电池负极材料NaTi2(PO4)3电化学性能的影响
|
Abstract:
为提高水溶液钠离子电池负极材料NaTi2(PO4)3(NTP)的导电性和倍率性能,以尿素(CO(NH2)2)为碳源采用溶剂热法合成了CO(NH2)2/NaTi2(PO4)3(C/NTP)复合负极材料。采用XRD、SEM、TEM、Raman和恒流充放电等手段分析了材料的结构、C/NTP形貌和电化学性能。研究了不同阶段升温速率对C含量、包覆层石墨化程度及对电化学性能的影响。实验结果表明,低于400℃升温速率越小,C/NTP残碳量越高;400~650℃之间升温速率越小,包覆层石墨化程度越高,并提高了其电化学性能;在5C倍率下2℃/min热处理的样品首圈放电比容量为114.9 mAh·g-1,循环30次后容量保持在91.9 mAh·g-1;10C下放电比容量为87 mAh·g-1,20C下放电比容量仍保持在71 mAh·g-1,展现出高倍率下优异的循环性能。 In order to enhance the electrical conductivity and rate capability of NaTi2(PO4)3 (NTP)as anode materials for aqueous rechargeable Na-ion batteries, the C/NTP composites were prepared by the solvothermal strategy using CO(NH2)2 as the carbon source. The crystal structure, surface morphology and electrochemical properties of the obtained CO(NH2)2/NaTi2(PO4)3(C/NTP)composites were investigated by the XRD, SEM, TEM, Raman and constant current charge-discharge testing. The effect of heating rate at different stage on the content of carbon, the graphitization degree of coating layer and the electrochemical performance of C/NTP composites was carefully studied. The results show that below 400℃ the lower of the heating rate, the higher content of carbon remains in C/NTP, and the lower of the heating rate between 400℃ and 650℃, the higher graphitization degree of carbon coating obtained, which also can improve the electrochemical performance of C/NTP composites. The initial discharge capacity of the C/NTP composites treated at the heating rate of 2℃/min reaches 114.9 mAh·g-1 at the current of 5C and maintain as 91.9 mAh·g-1 after 30 cycles, and the discharge capacity even keeps 87 mAh·g-1 at the current of 10C and 71 mAh·g-1 at the current of 20C, which exhibites excellent cycle performance at high current rate. 湖北省自然科学基金(2014CFB781)
[1] | KIM S, SEO D, MA X, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721. |
[2] | LARCHER D, TARASCON J. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2014, 7(1): 19-29. |
[3] | YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews. 2014, 114(23): 11636-11682. |
[4] | HONG S Y, KIM Y, PARK Y et al. Charge carriers in rechargeable batteries: Na ions vs. Li ions[J]. Energy & Environmental Science, 2013, 6(2): 2067-2081. |
[5] | SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Advanced Function Materials, 2013, 23(8): 947-958. |
[6] | 杨汉西, 钱江峰.水溶液钠离子电池及其关键材料的研究进展[J].无机材料学报, 2013, 28(11):1165-1171. YANG H X, QIAN J F.Recent development of aqueous sodium ion batteries and their key materials[J]. Journal of Inorganic Materials, 2013, 28(11):1165-1171 (in Chinese). |
[7] | PANG G, NIE P, YUAN C, et al. Enhanced performance of aqueous sodium-ion batteries using electrodes based on the NaTi2(PO4)3/MWNTs-Na0.44MnO2 system[J]. Energy Technology, 2014, 2(8): 705-712. |
[8] | LI X, ZHU X, LIANG J et al. Graphene-supported NaTi2(PO4)3 as a high rate anode material for aqueous sodium-ion batteries[J]. Journal of the Electrochemical Society, 2014, 11(6):1181-1187. |
[9] | WU C, KOPOLD P, DING Y, et al. Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes[J]. ACS Nano, 2015, 9(6): 6610-6618. |
[10] | JIANG Y, SHI J, WANG M, et al. Highly reversible and ultrafast sodium storage in NaTi2(PO4)3 nanoparticles embedded in nanocarbon networks[J]. ACS Applied Materials & Interface, 2016, 8(1): 689-695. |
[11] | 刘杰, 程志涛, 连峰, 等. 预炭化过程中升温速率对碳纤维结构与性能的影响[J]. 北京化工大学学报(自然科学版), 2011, 38(04): 68-73. LIU J, CHENG Z T, LIAN F, et al. Coking process heating rate on the influence of the structure and performance of carbon fiber[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2011, 38(04): 68-73 (in Chinese). |
[12] | WU W, RUTT A. WISE A. Using intimate carbon to enhance the performance of NaTi2(PO4)3 anode materials: Carbon nanotubes vs graphite[J]. Journal of Power Sources, 2014, 56(4):561-567. |
[13] | PARK S I, GOCHEVA I, OKADA S, et al. Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(10): A1067. |
[14] | HU Y, DOEF M, KOSTECKI R, et al. Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries[J]. The Electrochemical Society, 2004, 151(8): 1279-1285. |
[15] | CUI D, CHEN S, HAN C, et al. Carbothermal reduction synthesis of carbon coated Na2FePO4F for lithium ion batteries[J]. Journal of Power Sources, 2016(301): 87-92. |
[16] | 刘全兵, 毛国龙, 张健, 等. LiFePO4在水溶液电解液中电化学储锂性能研究[J].电源技术, 2015, 39(05): 891-892. LIU Q B, MAO G L, ZHANG J, et al. Study on electrochemical storage lithium properties of LiFePO4 in an aqueous electrolyte[J]. Chinese Journal of Power Sources, 2015, 39(05): 891-892 (in Chinese). |
[17] | LI Z, YOUNG D, XIANG K, et al. Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 system[J]. Advanced Energy Materials, 2013, 3(3): 290-294. |
[18] | PANG G, YUAN C, NIE P, et al. Synthesis of NASICON-type structured NaTi2(PO4)3-graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries[J]. Nanoscale, 2014, 6(12): 6328. |
[19] | NIEN Y, CAREY J R, CHEN J. Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors[J]. Journal of Power Sources, 2009, 193(2): 822-827. |
[20] | NAKAMURA T, MIWA Y, TABUCHI M, et al. Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties[J]. The Electrochemical Society, 2006, 153 (6):1108-1114. |