全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

喷铝涂层碳纤维增强树脂基复合材料抗雷击性能实验及仿真
Lightning protection performance experiment and simulation of carbon fiber reinforced polymer sprayed with aluminum particles

DOI: 10.13801/j.cnki.fhclxb.20171206.005

Keywords: 碳纤维增强树脂基复合材料,雷击防护,喷铝涂层,冲击电流测试,电热耦合效应
carbon fiber reinforced polymer composites
,lightning strike protection,sprayed aluminum coating,impulse current testing,coupled thermal-electrical effect

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究喷铝涂层对碳纤维增强树脂基复合材料(Carbon fiber reinforced polymer,CFRP)结构的雷击防护(LSP)性能,开展了实验和数值仿真研究。对未防护CFRP材料开展的雷击过程观测、损伤测试及超声C扫描检测结果表明:雷电流直接效应会对CFRP造成明显的可见损伤,且焦耳热效应会在雷电流注入到材料中后持续作用,引起更大范围的内部损伤;对全喷铝CFRP开展的雷击测试表明,喷铝涂层能够显著减小CFRP表面的雷击损伤面积,且涂层厚度越大,LSP效果越好。基于实验结果,采用随温度变化的材料参数建立了未防护、全喷铝及十字形喷铝3种CFRP结构的电热耦合效应仿真模型,并与实验结果进行对比,验证了仿真方法的有效性。最后,利用所建立的模型分析了雷电流A波作用下喷铝涂层的LSP性能。结果表明,当全喷铝涂层的厚度为0.19 mm时,CFRP的损伤面积占比随结构的增重比达到最优;而对十字形涂层来说,雷电流传导路径所在的分支宽度应不小于20 mm,非传导路径所在的分支则可根据需要尽量减小宽度。 Experiments and simulations were carried out in this paper to investigate the lightning protection performance of carbon fiber reinforced polymer(CFRP) sprayed with aluminum particles. Results of lightning strike process(LSP) observation, damage test and ultrasonic C-scan show that direct effects of lightning strike can cause obvious external damages to unprotected CFRPs, and Joule heating effect will sustain after lightning current injected into the structure to cause more serious internal damages. Lightning tests implemented to CFRPs with aluminum particles sprayed all top surface show that aluminum coating can significantly reduce the damage area caused by lightning strike on top surface of CFRP, and the thicker the coating is, the better the LSP effect is. Based on experimental results, coupled thermal-electrical analysis models of unprotected CFRP, CFRP with fully sprayed and cruciform aluminum coating were built with temperature dependent material properties, and then testified by comparing with the experimental results. After that, protection performance of sprayed aluminum coating under idealized lightning current component A was discussed with the analysis model. Results show that the percentage of damage area of CFRP and the percentage of mass increase of the structure is optimized at the thickness of 0.19 mm for fully sprayed aluminum coating, and the branch for lightning conduction should be wider than 20 mm for cruciform aluminum coating, while the other branch can be minimized as needed. 国家自然科学基金(51477183;51407198);博士后科学基金(2017M613401)

References

[1]  KATUNIN A, KRUKIEWICZ K, HEREGA A, et al. Concept of a conducting composite material for lightning strike protection[J]. Advances in Materials Science, 2016, 16(2):32-46.
[2]  LARSSON A. The interaction between a lightning flash and an aircraft in flight[J]. Comptes Rendus Physique, 2002, 3(10):1344-1423.
[3]  Society of Automotive Engineers. Aircraft lightning test methods:SAE-ARP5416[S]. Warrendale:Society of Automotive Engineers International, 2005.
[4]  付尚琛, 周颖慧, 石立华, 等. 碳纤维增强复合材料雷击损伤实验及电-热耦合仿真[J]. 复合材料学报, 2015, 32(1):250-259. FU S C, ZHOU Y H, SHI L H, et al. Experimental and electrical-thermal coupled simulation for lightning current damage of carbon fiber reinforced plastic[J]. Acta Materiae Compositae Sinica, 2015, 32(1):250-259(in Chinese).
[5]  GRAGOSSIAN A, TAVASSOLI S H, SHOKRI B. Laser ablation of aluminum from normal evaporation to phase explosion[J]. Journal Applied Physics, 2009, 105(10):103304-103307.
[6]  CHEMARTIN L, LALANDE P, PEYROU B, et al. Direct effects of lightning on aircraft structure:Analysis of the thermal, electrical and mechanical constraints[J]. Journal of Aerospace Lab, 2012, 5:1-15.
[7]  HIRANO Y, KATSUMATA S, IWAHORI Y, et al. Artificial lightning testing on graphite/epoxy composite laminate[J]. Composites Part A:Applied Science & Manufacturing, 2010, 41(10):1461-1470.
[8]  FERABOLI P, KAWAKAMI H. Damage of carbon/epoxy composite plates subjected to mechanical impact and simulated lightning[J]. Journal of Aircraft, 2010, 47(3):999-1012.
[9]  SOYKASAP O, KARAKAYA S, COLAKOGLU M. Simulation of lightning strike damage in carbon nanotube doped CFRP composites[J]. Journal of Reinforced Plastics & Composites, 2016, 35(6):504-515.
[10]  LIU Z Q, YUE Z F, WANG F S, et al. Combining analysis of coupled electrical-thermal and BLOW-OFF impulse effects on composite laminate induced by lightning strike[J]. Applied Composite Materials, 2015, 22(2):189-207.
[11]  LI S L, YIN J J, YAO X L, et al. Damage analysis for carbon fiber/epoxy composite exposed to simulated lightning current[J]. Journal of Reinforced Plastics and Composites, 2016, 35(15):1-13.
[12]  GOU J H, TANG Y, LIANG F, et al. Carbon nanofiber paper for lightning strike protection of composite materials[J]. Composites Part B:Engineering, 2010, 41(2):192-198.
[13]  FISHER F A, PLURNER J A. Lightning protection of aircraft[R]. Washington, D. C.:U. S. Government Printing Office, 1977.
[14]  BRISIUS D. Boeing 787 update[EB/OL]. (2007-05-01). http://www.compositesworld.com/articles/boeing-787-update.
[15]  GAGNE M, THERRIAULT D. Lightning strike protection of composites[J]. Progress in Aerospace Sciences, 2014, 64:1-16.
[16]  ABDELAL G, MURPHY A. Nonlinear numerical modelling of lightning strike effect on composite panels with temperature dependent material properties[J]. Composite Structures, 2014, 109(1):268-278.
[17]  WANG F S, JI Y Y, YU X S, et al. Ablation damage assessment of aircraft carbon fiber/epoxy composite and its protection structures suffered from lightning strike[J]. Com-posite Structures, 2016, 145:226-241.
[18]  HAN J H, ZHANG H, CHEN M J, et al. The combination of carbon nanotube buckypaper and insulating adhesive for lightning strike protection of the carbon fiber/epoxy laminates laminates[J]. Carbon, 2015, 94:101-113.
[19]  Society of Automotive Engineers. Aircraft lightning environment and related test waveforms:SAE-ARP5412[S]. Warrendale:Society of Automotive Engineers International, 2005.
[20]  SONEHARA T, HIRANO Y, KUSANO H, et al. Visualization of lightning impulse current discharge on CFRP laminate[C]//2014 International Conference on Lightning Protection (ICLP). Shanghai, 2014:563-567.
[21]  Dassault System Simulia Co.. ABAQUS theory manual[M]. Pawtucket:Hibbitt, Karlsson & Sorensen, Inc., 2007.
[22]  GRIFFIS C A, NEMES J A, STRONESIFER F R, et al. Degradation in strength of laminated composites subjected to intense heating and mechanical loading[J]. Journal Compo-site Materials, 1986, 20:216-235.
[23]  FERABOLI P, MILLER M. Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike[J]. Composites Part A:Applied Science & Manufacturing, 2009, 40(6):954-967.
[24]  OGASAWARA T, HIRANO Y, YOSHIMURA A. Coupled thermal-electrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current[J]. Composites Part A:Applied Science & Manufacturing, 2010, 41(8):973-981.
[25]  DONG Q, GUO Y L, SUN X C, et al. Coupled electrical-thermal-pyrolytic analysis of carbon fiber/epoxy composites subjected to lightning strike[J]. Polymer, 2015, 56:385-394.
[26]  FANUCCI J. Thermal response of radiantly heated Kevlar and graphite/epoxy composites[J]. Journal Composite Materials, 1987, 21(2):129-139.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133