全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

三维机织复合材料在拉压循环载荷下的疲劳性能
Fatigue behaviors of 3D woven composites under tension-compression cyclic loading

DOI: 10.13801/j.cnki.fhclxb.20171228.002

Keywords: 三维机织复合材料,疲劳性能,损伤,剩余刚度比,S-N曲线
3D woven composites
,fatigue behaviors,damage,residual stiffness ratio,S-N curve

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究三维机织复合材料在拉伸-压缩循环载荷下的疲劳性能,对材料进行了应力比R=-1的疲劳试验。在不同的载荷水平下,分别进行了纬向和经向两类拉压疲劳试验。试验获得了试样在疲劳载荷下的滞回曲线和全过程中剩余刚度比随寿命的变化曲线。结果表明,在拉伸-压缩循环载荷下,三维机织复合材料的疲劳损伤过程主要包含3个阶段,分别发生基体破坏、纱线横向裂纹扩展和纱线的最终断裂。基体的破碎和开胶、垂直于载荷方向排布的纱线撕裂和沿载荷方向排布的纱线断裂是试样内部的主要失效模式。试验还获得了纬向和经向拉压疲劳的拟合S-N曲线,可应用于工程中对该型材料进行疲劳寿命估算。该型材料的疲劳寿命在低应力区和高应力区均显示出较小的分散性,双对数坐标系下的拟合S-N曲线具有较好的线性度。 In order to investigate the fatigue behaviors of 3D woven composites under tension-compression cyclic loading, fatigue tests which had a stress ratio of R=-1 were conducted. Under different loading levels, weft and warp fatigue tests were conducted. The hysteresis loops and curves of residual stiffness ratio via fatigue life were obtained. It is implicated that the fatigued damage progress of 3D woven composites under tension-compression cyclic loading mainly contains three stages:the failure of matrix, transverse crack propagation inside the yarns and the fracture of yarns occur in sequence. The crush and debonding of matrix, the avulsion of yarns which is perpendicular to the loading direction and the fracture of yarn which is along the loading direction are major failure modes. The fitted tension-compression fatigue S-N curves were also obtained, which can be applied in engineering to estimate fatigue life of this type of material. Both fatigue life in low and high stress region show small variance. The fitting S-N curves have good linearity in the double logarithm coordinate. 航空科学基金(2015ZA57002)

References

[1]  易洪雷, 丁辛. 三维机织复合材料力学性能研究进展[J]. 力学进展, 2001, 31(2):161-171. YI Honglei, DING Xin. Progressing in the study on mechanical properties of 3D woven composites[J]. Advances in Mechanics, 2001, 31(2):161-171(in Chinese).
[2]  杨连贺, 邱冠雄, 黄故. 任意结构三维机织复合材料弹性性能的计算机模拟[J]. 复合材料学报, 2000, 17(2):79-83. YANG Lianhe, QIU Guanxiong, HUANG Gu, et al. Computersimulation of elastic properties on any structure 3-D woven composites[J]. Acta Materiae Compositae Sinica, 2000, 17(2):79-83(in Chinese).
[3]  丁辛, 易洪雷. 三维机织结构的几何模型[J]. 复合材料学报, 2003, 20(5):108-113. DING Xin, YI Honglei. A geometric model of three dimensional woven structures[J]. Acta Materiae Compositae Sinica, 2003, 20(5):108-113(in Chinese).
[4]  杨彩云, 李嘉禄. 三维机织复合材料力学性能的各向异性[J]. 复合材料学报, 2006, 23(2):59-64. YANG Caiyun, LI Jialu. Mechanical anisotropy of threedimensional woven composites[J]. Acta Materiae Compositae Sinica, 2006, 23(2):59-64(in Chinese).
[5]  周储伟, 张音旋. 三维机织复合材料多尺度黏弹性分析[J]. 复合材料学报, 2007, 24(5):125-129. ZHOU Chuwei, ZHANG Yinxuan. Multiple scale viscoelastic analysis of 3D woven composite materials[J]. Acta Materiae Compositae Sinica, 2007, 24(5):125-129(in Chinese).
[6]  梁仕飞, 矫桂琼, 王波. 三维机织C/C-SiC复合材料弹性性能预测[J]. 复合材料学报, 2011, 28(1):138-142. LIANG Shifei, JIAO Guiqiong, WANG Bo. Prediction of elastic properties of three dimensional woven C/C-SiC composite[J]. Acta Materiae Compositae Sinica, 2011, 28(1):138-142(in Chinese).
[7]  杨连贺, 陈利, 王善利. 应用经纬互规法建立3D机织复合材料的几何模型[J]. 复合材料学报, 2012, 29(3):208-213. YANG Lianhe, CHEN Li, WANG Shanli. Geometric modeling of 3D woven composite with warp and fill mutual imitation[J]. Acta Materiae Compositae Sinica, 2012, 29(3):208-213(in Chinese).
[8]  许承海, 孟松鹤, 齐菲, 等. 三维机织碳/碳复合材料双轴压缩载荷下的力学行为[J]. 复合材料学报, 2012, 29(6):206-211. XU C H, MENG S H, QI F, et al. Mechanical behaviors of thethree-dimensional woven carbon/carbon composite materialsunder biaxial compression[J]. Acta Materiae Compositae Sinica, 2012, 29(6):206-211(in Chinese).
[9]  金利民. 三维角联锁机织复合材料三点弯曲疲劳性能与结构效应[D]. 上海:东华大学, 2012. JIN Limin. Fatigue behavior and structural effects of 3-D angle-interlock woven composites undergoing three-point bending cyclic loading[D]. Shanghai:Donghua University, 2012(in Chinese).
[10]  JIN L, HU H, SUN B, et al. Three-point bending fatigue behavior of 3D angle-interlock woven composite[J]. Journal of Composite Materials, 2012, 46(8):883-894.
[11]  JIN L, SUN B, GU B. Cumulative fatigue damage for 3-D angle-interlock woven composite under three-point bending cyclic loading[J]. International Journal of Damage Mechanics, 2013, 22(1):3-16.
[12]  杨格, 潘忠祥. 三维角联锁机织复合材料三点弯曲疲劳的细观结构效应[J]. 玻璃钢/复合材料, 2014(3):13-17. YANG Ge, PAN Zhongxiang. The influence of microstructure of 3D angle-interlock woven composite on the fatigue behavior under three-point bending[J]. Fiber Reinforced Plastic/Composites, 2014(3):13-17(in Chinese).
[13]  冯古雨, 曹海建, 钱坤. 三维角联锁机织复合材料弯曲抗疲劳性能有限元分析[J]. 玻璃钢/复合材料, 2017(2):5-9. FENG Guyu, CAO Haijian, QIAN Kun. Finite element analysis on bending fatigue resistance performance of angle-interlock composite model[J]. Fiber Reinforced Plastic/Composites, 2017(2):5-9(in Chinese).
[14]  DAIS, CUNNINGHAM P R, MARSHALL S, et al. Open hole quasi-static and fatigue characterization of 3D woven composites[J]. Composite Structures, 2015, 131:765-774.
[15]  YU B, BRADLEY R S, SOUTIS C, et al. 2D and 3D imaging of fatigue failure mechanisms of 3D woven composites[J]. Composites Part A:Applied Science & Manufacturing, 2015, 77:37-49.
[16]  YU B, BLANC R, SOUTIS C, et al. Evolution of damage during the fatigue of 3D woven glass-fiber reinforced compo-sites subjected to tension-tension loading observed by time-lapse X-ray tomography[J]. Composites Part A:Applied Science & Manufacturing, 2016, 82:279-290.
[17]  STEGSCHUSTER G, PINGKARAWAT K, WENDLAND B, et al. Experimental determination of the mode I delamination fracture and fatigue properties of thin 3D woven compo-sites[J]. Composites Part A:Applied Science & Manufacturing, 2016, 84:308-315.
[18]  ROIRAND Q, MISSOUM-BENZIANE D, THIONNET A, et al. Finite element modelling of woven composite failure modes at the mesoscopic scale:Deterministic versus stochastic approaches[J]. Continuum Mechanics & Thermodyna-mics, 2017:1-12.
[19]  WILKINSON M P, RUGGLES-WRENN M B. Fatigue of a 3D orthogonal non-crimp woven polymer matrix composite at elevated temperature[J]. Applied Composite Materials, 2017, 24(6):1-20.
[20]  SONG J, WEN W, CUI H. Fatigue behaviors of 2.5D woven composites at ambient and un-ambient temperatures[J]. Composite Structures, 2017, 166:77-86.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133