|
- 2018
纳米纤维素-聚吡咯/天然橡胶柔性导电弹性体的制备与性能
|
Abstract:
以纤维素纳米纤丝(Cellulose nanofibrils,CNFs)为生物模板,将聚吡咯(Polypyrrole,PPy)原位聚合在CNFs表面,再将CNF-PPy复合物均匀分散到天然橡胶(Natural rubber,NR)弹性基体中,制备了具有高柔韧性的纳米纤维素-聚吡咯/天然橡胶(CNF-PPy/NR)导电弹性体。结果表明:CNFs可协助PPy在NR基体中形成三维导电网络结构,并提高弹性体的力学性能和导电性能,有效降低其逾渗阈值。当添加质量比为5%(以橡胶质量为基准,下同)的CNF和20%的PPy时,CNF-PPy/NR的拉伸强度可达(8.97±0.92)MPa,分别约为PPy/NR及纯NR的1.56倍和9.54倍,电导率可达(0.134±0.063)S/m;在0.3 A/g的电流密度下,比电容可达96 F/g,并在1.0 A/g电流密度下循环充放电1 200次后,比电容仍可保持其初始值的72%。此导电弹性体具有良好的力学强度和电学性能,有望应用于柔性有机电子器件领域。 Polypyrrole (PPy) was in-situ polymerized on the surface of biological template-cellulose nanofibers (CNFs) to form the CNF-PPy complexes, which further were uniformly dispersed into natural rubber (NR) elastomeric matrix to prepare CNF-PPy/NR conductive elastomers with high flexibility. The results show that CNFs can assist PPy to form a three-dimensional network structure in NR matrix, improve the mechanical properties and electrical conductivity of elastomers, and reduce the percolation threshold effectively. When adding 5% CNF(rubber mass as 100) and 20%PPy, the tensile strength of CNF-PPy/NR is (8.97±0.92) MPa, which is about 1.56 times of PPy/NR and 9.54 times of pure NR, respectively, and the conductivity is up to (0.134±0.063) S/m; At 0.3 A/g current density, the specific capacitance can reach 96 F/g, and it can still maintain its initial value of 72% in the cycle of charge and discharge 1 200 times with 1.0 A/g current density. The conductive elastomer exhibits good mechanical and electrical properties, which is expected to be applied in the field of flexible organic electronic devices. 国家自然科学基金(31770609);江苏省优秀青年基金(BK2018090);江苏省高校自然科学研究面上项目(17KJB220007);江苏省第五期"333工程"(2016);江苏高校青蓝工程资助(2016);浙江省重点研发计划项目(2017C01117);江苏高校优势学科建设工程(PAPD)
[1] | SANNICOLO T, LAGRANGE M, CABOS A, et al. Metallic nanowire-based transparent electrodes for next generation flexible devices:A review[J]. Small, 2016, 12(44):6052-6075. |
[2] | MOSTAFALU P, NEZHAD A S, NIKKHAH M, et al. Flexible electronic devices for biomedical applications[J]. Springer International Publishing, 2017:341-366. |
[3] | LEE J, LEE P, LEE H, et al. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel[J]. Nanoscale, 2012, 4(20):6408-6414. |
[4] | HUANG L, HUANG Y, LIANG J, et al. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors[J]. Nano Research, 2011, 4(7):675-684. |
[5] | KONDAWAR S B, PATIL P T. Conducting polymer nanocomposites for sensor applications[M]. Conducting Polymer Hybrids:Springer, 2017:223-267. |
[6] | 樊玮, 张超, 刘天西. 石墨烯/聚合物复合材料的研究进展[J]. 复合材料学报, 2013, 30(1):14-21. FAN W, ZHANG C, LIU T X, et al. Research progress of graphene/polymer composites[J]. Acta Materiae Compositae Sinica, 2013, 30(1):14-21(in Chinese). |
[7] | GAO F, ZHANG N, FANG X, et al. Bioinspired design of strong, tough, and highly conductive polyol-polypyrrole composites for flexible electronics[J]. ACS Applied Materials & Interfaces, 2017, 9(7):5692-5698. |
[8] | KANAZAWA K K, DIAZ A, GILL W, et al. Polypyrrole:An electrochemically synthesized conducting organic polymer[J]. Synthetic Metals, 1980, 1(3):329-336. |
[9] | OMASTOVA M, MICUSLK M. Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation[J]. Chemical Papers, 2012, 66(5):392-414. |
[10] | WANG L X, LI X G, YANG Y L. Preparation, properties and applications of polypyrroles[J]. Reactive & Functional Polymers, 2001, 47(2):125-139. |
[11] | GEDELA V R, SRIKANTH V V. Electrochemically active polyaniline nanofibers (PANi NFs) coated graphene nanosheets/PANi NFs composite coated on different flexible substrates[J]. Synthetic Metals, 2014, 193(7):71-76. |
[12] | ZHOU Z, ZHANG X, WU X, et al. Self-stabilized polyaniline@graphene aqueous colloids for the construction of assembled conductive network in rubber matrix and its chemical sensing application[J]. Composites Science & Technology, 2016, 125:1-8. |
[13] | 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定:GB/T 528-2009[S]. 北京:中国标准出版社, 2009. China National Standardization Administration. Tensile stress and strain test of vulcanized rubber or thermoplastic rubber:GB/T 528-2009[S]. Beijing:Standard Press of China, 2009(in Chinese). |
[14] | KRISHNA S H, RAO K S, BABU J S, et al. Studies on the production and application of cellulase from trichoderma reesei QM-9414[J]. Bioprocess Engineering, 2000, 22(5):467-470. |
[15] | DUCHET J, LEGRAS R, DEMOUSTIER-CHAMPAGNE S. Chemical synthesis of polypyrrole:Structure-properties relationship[J]. Synthetic Metals, 1998, 98(2):113-122. |
[16] | LIU S, ZHANG L. Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution[J]. Cellulose, 2009, 16(2):189-198. |
[17] | MARIANO M, El K N, DUFRESNE A. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites[J]. Carbohydrate Polymers, 2016, 137:174-183. |
[18] | LU Y, SONG Y, WANG F. Thermoelectric properties of graphene nanosheets-modified polyaniline hybrid nanocomposites by an in situ chemical polymerization[J]. Materials Chemistry and Physics, 2013, 138(1):238-244. |
[19] | 徐苏华, 古菊, 罗远芳, 等. 纳米微晶纤维素对白炭黑/天然橡胶复合材料性能的影响[J]. 复合材料学报, 2011, 28(6):39-44. XU S H, GU J, LUO Y F, et al. Effect of cellulose nanocrystals on the properties of silica/natural rubber composites[J]. Acta Materiae Compositae Sinica, 2011, 28(6):39-44(in Chinese). |
[20] | JUNG Y H, CHANG T H, ZHANG H, et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper[J]. Nature Communications, 2015, 6:7170. |
[21] | ZHU H, LUO W, CIESIELSKI P N, et al. Wood-derived materials for green electronics, biological devices, and energy applications[J]. Chemical Reviews, 2016, 116(16):9305-9374. |
[22] | PHOMRAK S, PHISALAPHONG M. Reinforcement of natural rubber with bacterial cellulose via a latex aqueous microdispersion process[J]. Journal of Nanomaterials, 2017(4):1-9. |
[23] | WANG Z, TAMMELA P, ZHANG P, et al. Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications[J]. Nanoscale, 2014, 6(21):13068-13075. |
[24] | BOBER P, LIU J, MIKKONEN K S, et al. Biocomposites of nanofibrillated cellulose, polypyrrole, and silver nanoparticles with electroconductive and antimicrobial properties[J]. Biomacromolecules, 2014, 15(10):3655-3663. |
[25] | LAY M, MENDEZ J A, DELGADO-AGUILAR M, et al. Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole[J]. Carbohydrate Polymers, 2016, 152:361-369. |
[26] | HAN J, ZHOU C, WU Y, et al. Self-assembling behavior of cellulose nanoparticles during freeze-drying:Effect of suspension concentration, particle size, crystal structure, and surface charge[J]. Biomacromolecules, 2013, 14(5):1529-1540. |
[27] | WU J, XING W, HUANG G, et al. Vulcanization kinetics of graphene/natural rubber nanocomposites[J]. Polymer, 2013, 54(13):3314-3323. |
[28] | JOULAZADEH M, NAVARCHIAN A H. Polypyrrole nanotubes versus nanofibers:A proposed mechanism for predicting the final morphology[J]. Synthetic Metals, 2015, 199:37-44. |
[29] | ZHANG L, CHEN G, TANG H, et al. Preparation and characterization of composite membranes of polysulfone and microcrystalline cellulose[J]. Journal of Applied Polymer Science, 2009, 112(1):550-556. |
[30] | 潘勇军, 陈勇, 崔丽, 等. 磺酸钠基天然橡胶离聚体/聚苯胺复合材料的力学、电学性能[C]. 全国高分子材料科学与工程研讨会, 2012. PANG Y J, CHEN Y, CUI L, et al. Mechanics and electrical properties of sodium sulfonate natural rubber ionomer/polyaniline composites[C]. National Symposium on Polymer Materials Science and Engineering, 2012(in Chinese). |
[31] | LI Y Q, ZHU W B, YU X G, et al. Multifunctional wearable device based on flexible and conductive carbon sponge/polydimethylsiloxane composite[J]. ACS Applied Materials & Interfaces, 2016, 8(48):33189-33196. |
[32] | KETTLGRUBER G, KALTENBRUNNER M, SIKET C M, et al. Intrinsically stretchable and rechargeable batteries for self-powered stretchable electronics[J]. Journal of Materials Chemistry A, 2013, 1(18):5505-5508. |
[33] | LIN L, LIU S, FU S, et al. Fabrication of highly stretchable conductors via morphological control of carbon nanotube network[J]. Small, 2013, 9(21):3620-3629. |
[34] | LANGLEY D, GIUSTI G, MAYOUSSE C, et al. Flexible transparent conductive materials based on silver nanowire networks:A review[J]. Nanotechnology, 2013, 24(45):452001. |
[35] | SKOTHEIM T A, REYNOLDS J. Conjugated polymers:Theory, synthesis, properties, and characterization (handbook of conducting polymers, third edition)[C]. Acs National Meeting Book of Abstracts, USA:CRC Press, 2006, 238. |
[36] | 付长璟, 李爽, 宋春来, 等. 聚吡咯/氧化石墨复合材料的制备及其电容性能[J]. 复合材料学报, 2016, 33(3):572-579. FU C J, LI S, SONG C L, et al. Preparation of polypyrrole/oxidized graphite composites and their capacitance properties[J]. Acta Materiae Compositae Sinica, 2016, 33(3):572-579(in Chinese). |
[37] | ZHOU Z, ZHANG X, WU X, et al. Self-stabilized polyaniline@graphene aqueous colloids for the construction of assembled conductive network in rubber matrix and its chemical sensing application[J]. Composites Science and Technology, 2016, 125:1-8. |
[38] | WU X, LU C, XU H, et al. Biotemplate synthesis of polyaniline@cellulose nanowhiskers/natural rubber nanocomposites with 3D hierarchical multiscale structure and improved electrical conductivity[J]. ACS Applied Materials & Interfaces, 2014, 6(23):21078-21085. |
[39] | KHALIL H A, BHAT A, YUSRA A I. Green composites from sustainable cellulose nanofibrils:A review[J]. Carbohydrate Polymers, 2012, 87(2):963-979. |
[40] | FAVIER V, CAVAILLE J, CHANZY H. Cellulose whiskers in polymeric matrix forming nano composites[R]. American Chemical Society, Washington, DC (United States), 1995. |