全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

加捻植物纤维增强树脂基复合材料偏轴拉伸非线性多层次角度融合建模
Modeling the off-axis tensile nonlinearity of twisted plant fiber reinforced composites fused with hierarchical angles

DOI: 10.13801/j.cnki.fhclxb.20171206.002

Keywords: 加捻,植物纤维,复合材料,多层次角度,偏轴拉伸,非线性
twist
,plant fiber,composites,hierarchical angle,off-axis tension,nonlinear

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对加捻植物纤维增强树脂基复合材料偏轴拉伸非线性力学行为,以宏、细观相结合的思路,建立了融合植物纤维微纤丝角、纱线加捻表面捻转角和复合材料偏轴拉伸角的多层次角度融合本构模型,在实际计算时,由于微纤丝角的随机性、难于测量和对复合材料偏轴拉伸性能相对表面捻转角和偏轴拉伸角的较小影响,假定微纤丝角是常量,计算时仅考虑表面捻转角和偏轴拉伸角,适当简化。最后,利用单向亚麻纤维织物增强环氧树脂基复合材料拉伸实验数据和文献数据验证模型的有效性,模型计算结果与实验结果吻合较好。 Aiming at the off-axis tensile nonlinear behavior of twisted plant fiber reinforced composites, hierarchical angle constitutive model was built up by integration of macroscale and microscale methods by considering micro fibril angle of plant fibers, surface twist angle of fiber yarn and off-axis tensile angle of composites. When calculated, this model could only consider the effects of surface twist angle and off-axis tensile angle because micro fibril angle was random, difficult to be measured and less effects to composites' off-axis tensile properties than surface twist angle and off-axis tensile angle. That meant micro fibril angle was assumed to be constant and that model would be simplified. Finally, the model was validated by the experimental data of unidirectional flax fabric reinforced epoxy compo-sites conducted in this research and from the literatures. The calculated results show good agreement with the experimental data. 国家杰出青年科学基金(11625210)

References

[1]  MADSEN B, HOFFMEYER P, LILHOLT H. Hemp yarn reinforced composites-Ⅱ:Tensile properties[J]. Composites Part A:Applied Science & Manufacturing, 2007, 38(10):2204-2215.
[2]  SHAH D U, SCHUBEL P J, CLIFFORD M J, et al. The tensile behavior of off-axis loaded plant fiber composites:An insight on the nonlinear stress-strain response[J]. Polymer Composites, 2012, 33(9):1494-1504.
[3]  SHAH D U, SCHUBEL P J, CLIFFORD M J, et al. Mechanical characterization of vacuum infused thermoset matrix composites reinforced with aligned hydroxyethylcellulose sized plant bast fiber yarns[C]//4th International Conference on Sustainable Materials. Polymers and Composites, 2011.
[4]  SHAH D U, SCHUBEL P J, CLIFFORD M J. Modelling the effect of yarn twist on the tensile strength of unidirectional plant fiber yarn composites[J]. Journal of Composite Materials, 2013, 47(4):425-436.
[5]  SHAH D U, SCHUBEL P J, CLIFFORD M J, et al. Hydroxy ethylcellulose surface treatment of natural fibers:The new ‘twist’ in yarn preparation and optimization for composites applicability[J]. Journal of Material Science, 2012, 47(6):2700-2711.
[6]  GOUTIANOS S, PEIJS T. The optimisation of flax fibre yarns for the development of high-performance natural fibre composites[J]. Advanced Composite Letters, 2003, 12(6):237-241.
[7]  王春敏. 纤维束本构方程的研究[J]. 纺织学报, 2006, 27(3):1-3. WANG Chunming. Study on the constitutive equation of fiber bundle[J]. Journal of Textile Research, 2006, 27(3):1-3(in Chinese).
[8]  PLACET V, TRIVAUDEY F, CISSE O, et al. Diameter dependence of the apparent tensile modulus of hemp fibres:A morphological, structural or ultrastructural effect[J]. Composites Part A:Applied Science & Manufacturing, 2012, 43(2):275-287.
[9]  BERGANDER A, SALMEN L. Cell wall properties and their effects on the mechanical properties of fibers[J]. Journal of Material Science, 2002, 37(1):151-156.
[10]  BLEDZKI A K, GASSAN J. Composites reinforced with cellulose based fibres[J]. Progress in Polymer Science, 1999, 24(2):221-274.
[11]  MCLAUGHLIN E C, TAIT R A. Fracture mechanism of plant fibres[J]. Journal of Material Science, 1980, 15(1):89-95.
[12]  REITERER A, LICHTENEGGER H, TSCHEGG S, et al. Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls[J]. Philosophical Magazine A, 1999, 79(9):2173-2184.
[13]  BURGERT I, FRATZL P. Plants control the properties and actuation of their organs through the orientation of cellulose fibrils in their cell walls[J]. Integrative & Comparative Bio-logy, 2009, 49(1):69-79.
[14]  PICKERING K L. Properties and performance of natural-fibre composites[M]. Boca Raton:CRC Press LLC, 2008.
[15]  LEWIN M. Handbook of fiber chemistry[M]. 3rd ed. Boca Raton:CRC Press LLC, 2007.
[16]  BARNETT J R, BONHAM V A. Cellulose microfibril angle in the cell wall of wood fibres[J]. Biological Reviews, 2004, 79(2):461-472.
[17]  MA Hao, LI Yan, WANG Di. Investigations of fiber twist on the mechanical properties of sisal fiber yarns and their composites[J]. Journal of Reinforced Plastics and Compo-sites, 2014, 33(7):687-696.
[18]  BALEY C, PERROT Y, BUSNEL F, et al. Transverse tensile behaviour of unidirectional plies reinforced with flax fibres[J]. Materials Letters, 2006, 60(24):2984-2987.
[19]  WEYENBERG I V, CHITRUONG T, et al. Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment[J]. Composites Part A:Applied Science & Manufacturing, 2006, 37(9):1368-1376.
[20]  KUMAR P. Role of 2'-mercaptopropionylglycine (MPG) against toxicity of cyclophosphamide in normal and tumour-bearing mice[J]. Indian Journal of Experimental Biology, 1986, 24(12):767-770.
[21]  NTENGA R, BE'AKOU A, et al. Estimation of the elastic anisotropy of sisal fibres by an inverse method[J]. Journal of Materials Science, 2008, 43(18):6206-6213.
[22]  CICHOCKI F R, THOMASON J L. Thermoelastic anisotropy of a natural fiber[J]. Composites Science & Technology, 2002, 62(5):669-678.
[23]  LAGZDINS A, TETERS G, ZILAUCS A. Nonlinear deformation of composites with consideration of the effect of couple-stresses[J]. Mechanics of Composite Materials, 1998, 34(5):403-418.
[24]  SHAHZAD A. Hemp fiber and its composites-A review[J]. Journal of Composite Materials, 2012, 46(8):973-986.
[25]  ASTM. Standard test method for tensile properties of polymer matrix composite materials:ASTM D3039/D3039M-08[S]. West Conshohocken:ASTM International, 2017.
[26]  MADSEN B, HOFFMEYER P, THOMSEN A B, et al. Hemp yarn reinforced composites-I. Yarn characteristics[J]. Composites Part A:Applied Science & Manufacturing, 2007, 38(10):2194-2203.
[27]  SHAH D U, NAG R K, CLIFFORD M J. Why do we observe significant differences between measured and ‘back-calculated’ properties of natural fibres[J]. Cellulose, 2016, 23(3):1481-1490.
[28]  SHAH D U, SCHUBEL P J, CLIFFORD M J. Determining the minimum, critical and maximum fiber content for twisted yarn reinforced plant fiber composites[J]. Composites Science & Technology, 2012, 72(15):1909-1917.
[29]  BALEY C. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase[J]. Composites Part A:Applied Science & Manufacturing, 2002, 33(7):939-948.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133