|
- 2018
基于修正剪滞模型的竹纤维/基体界面应力理论
|
Abstract:
竹维管束鞘中竹纤维/基体界面力学问题对分析竹维管束在微观尺度下的力学行为起着重要作用。本文针对竹纤维排布方式,并结合竹纤维锥形尖端几何特征,提出了适用于对竹维管束鞘做分析的修正剪滞理论模型,推导出了纤维轴向应力及纤维/基体界面位置处剪应力计算公式,在此基础上讨论了竹纤维长径比和纤维锥形尖端对复合材料内部应力分布的影响。分析发现,竹纤维较大长径比和细长锥形尖端可以实现纤维/基体界面间应力的有效传递。 The interface stress between bamboo fiber and matrix plays an important role in controlling the micro-mechanical behavior of bamboo vascular bundles. Based on the staggered alignment pattern and conical-end geometrical character of bamboo fiber, a modified shear-lag model was developed to study the stress transfer problem in bamboo vascular bundle sheath, with which the axial average stresses of bamboo fiber and fiber/matrix interface shear stress were derived. Then the effects of fiber-aspect ratio and fiber tip-length ratio on the stress distribution along the fiber length were investigated. The analysis results show that the large aspect ratio and sharp tapered-end of bamboo tiny fiber can make the interfacial stress transfer effectively. 西安交通大学机械结构强度与振动国家重点实验室开放课题(SV2015-KF-15);国家重点研发计划课题(2016YFD0701801);国家自然科学基金(11502167;11372216);山西农业大学引进人才项目(2013YJ27)
[1] | CHUNG K, YU W. Mechanical properties of structural bamboo for bamboo scaffoldings[J]. Engineering Structures, 2002, 24(4):429-442. |
[2] | YU W, CHUNG K, CHAN S. Axial buckling of bamboo columns in bamboo scaffolds[J]. Engineering Structures, 2005, 27(1):61-73. |
[3] | NAIRN J A. On the use of shear-lag methods for analysis of stress transfer in unidirectional composites[J]. Mechanics of Materials, 1997, 26(2):63-80. |
[4] | ZHANG P, HEYNE M A, TO A C. Biomimetic staggered composites with highly enhanced energy dissipation:Design, modeling, and test[J]. Journal of the Mechanics & Physics of Solids, 2015, 83:285-300. |
[5] | DAI Y, MAI Y W, JI X. Predictions of stiffness and strength of nylon 6/MMT nanocomposites with an improved staggered model[J]. Composites Part B:Engineering, 2008, 39(6):1062-1068. |
[6] | SORIEUL M, DICKSON A, HILL S, et al. Plant fibre:Molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite[J]. Materials, 2016, 9(8):618. |
[7] | HABIBI M K, LU Y. Crack propagation in bamboo's hierarchical cellular structure[J]. Scientific Reports, 2014, 4(4):5598. |
[8] | NOGATA F, TAKAHASHI H. Intelligent functionally graded material:Bamboo[J]. Composites Engineering, 1995, 5(7):743-751. |
[9] | AHMAD M, KAMKE F. Analysis of calcutta bamboo for structural composite materials:Physical and mechanical properties[J]. Wood Science and Technology, 2005, 39(6):448-459. |
[10] | AMADA S, ICHIKAWA Y, MUNEKATA T, et al. Fiber texture and mechanical graded structure of bamboo[J]. Composites Part B:Engineering, 1997, 28(1):13-20. |
[11] | SHAO Z P, FANG C H, HUANG S X, et al. Tensile properties of Moso bamboo (phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure[J]. Wood Science and Technology, 2010, 44(4):655-666. |
[12] | YU H, FEI B, REN H, et al. Variation in tensile properties and relationship between tensile properties and air-dried density for moso bamboo[J]. Frontiers of Forestry in China, 2008, 3(1):127-130. |
[13] | LI H B, SHEN S P. The mechanical properties of bamboo and vascular bundles[J]. Journal of Materials Research, 2011, 26(21):2749-2756. |
[14] | LI H B, SHEN S P. Experimental investigation on mechanical behavior of moso bamboo vascular bundles[J]. Key Engineering Materials, 2011, 462:744-749. |
[15] | YU Y, JIANG Z H, FEI B H, et al. An improved microtensile technique for mechanical characterization of short plant fibers:A case study on bamboo fibers[J]. Journal of Materials Science, 2011, 46(3):739-746. |
[16] | YU Y, WANG H, LU F, et al. Bamboo fibers for composite applications:A mechanical and morphological investigation[J]. Journal of Materials Science, 2014, 49(6):2559-2566. |
[17] | SHANG L, SUN Z, LIU X, et al. A novel method for measuring mechanical properties of vascular bundles in moso bamboo[J]. Journal of Wood Science, 2015, 61(6):562-568. |
[18] | YU Y, FEI B, ZHANG B, et al. Cell-wall mechanical properties of bamboo investigated by in-situ imaging nanoindentation[J]. Wood and Fiber Science, 2007, 39(4):527-535. |
[19] | YU Y, TIAN G, WANG H, et al. Mechanical characterization of single bamboo fibers with nanoindentation and microtensile technique[J]. Holzforschung, 2011, 65(1):113-119. |
[20] | WANG X, REN H, ZHANG B, et al. Cell wall structure and formation of maturing fibres of moso bamboo(phyllostachys pubescens) increase buckling resistance[J]. Journal of the Royal Society Interface, 2012, 9(70):988-996. |
[21] | LIESE W. The anatomy of bamboo culms[M]. Netherlands:Brill Academic Publishers, 1998. |
[22] | ZOU L, JIN H, LU W Y, et al. Nanoscale structural and mechanical characterization of the cell wall of bamboo fibers[J]. Materials Science and Engineering C, 2009, 29(4):1375-1379. |
[23] | YOUSSEFIAN S, RAHBAR N. Molecular origin of strength and stiffness in bamboo fibrils[J]. Scientific Reports, 2015, 5:11116. |
[24] | KOTHA S, KOTHA S, GUZELSU N. A shear-lag model to account for interaction effects between inclusions in compo-sites reinforced with rectangular platelets[J]. Composites Science and Technology, 2000, 60(11):2147-2158. |
[25] | GOH K, ASPDEN R, MATHIAS K, et al. Effect of fibre shape on the stresses within fibres in fibre-reinforced compo-site materials[J]. Proceedings of the Royal Society of London Series A:Mathematical, Physical and Engineering Sciences, 1999, 455(1989):3351-3361. |
[26] | GOH K, MEAKIN J, ASPDEN R, et al. Influence of fibril taper on the function of collagen to reinforce extracellular matrix[J]. Proceedings of the Royal Society B:Biological Sciences, 2005, 272(1575):1979-1983. |
[27] | NG X, HUKINS D W L, GOH K. Influence of fibre taper on the work of fibre pull-out in short fibre composite fracture[J]. Journal of Materials Science, 2010, 45(4):1086-1090. |
[28] | GOH K L, MEAKIN J R, ASPDEN R M, et al. Stress transfer in collagen fibrils reinforcing connective tissues:Effects of collagen fibril slenderness and relative stiffness[J]. Journal of Theoretical Biology, 2007, 245(2):305-311. |
[29] | GOH K, ASPDEN R, MATHIAS K, et al. Finite-element analysis of the effect of material properties and fibre shape on stresses in an elastic fibre embedded in an elastic matrix in a fibre-composite material[J]. Proceedings of the Royal Society of London Series A:Mathematical, Physical and Engineering Sciences, 2004, 460(2048):2339-2352. |
[30] | SONG Z Q, NI Y, PENG L M, et al. Interface failure modes explain non-monotonic size-dependent mechanical properties in bioinspired nanolaminates[J]. Scientific Reports, 2016, 6:23724. |
[31] | YUAN F, STOCK S R, HAEFFNER D R, et al. A new model to simulate the elastic properties of mineralized collagen fibril[J]. Biomechanics and Modeling in Mechanobiology, 2011, 10(2):147-160. |
[32] | 黄艳辉. 毛竹纤维细胞力学性质研究[D]. 北京:中国林业科学研究院, 2010. HUANG Y H. Study on the mechanical properties of fiber cells of moso bamboo[D]. Beijing:Chinese Academy of Forestry, 2010(in Chinese). |
[33] | 车慎思. 毛竹细观结构与力学性能试验研究[D]. 南京:南京航空航天大学, 2011. CHE S S. Experimental research on microstructure and mechanical performance of bamboo[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011(in Chinese). |