|
- 2018
柔性吸声隔音降噪纺织复合材料
|
Abstract:
柔性吸声隔音降噪纺织复合材料由于能够提供比传统纺织品更宽的吸声域,比传统降噪材料轻薄、柔软、透气和易加工而备受关注。开发基于纺织材料的聚合物复合材料是近年来噪声控制领域的热点研究方向之一。本文从新型纤维、降噪功能填料和柔性降噪纺织复合材料3个方面综述了国内外柔性吸声隔音纺织品的研究进展,并归纳总结了柔性降噪纺织品的制备方法,进一步对柔性吸声隔音降噪纺织品的发展趋势进行了展望。 Soft composite materials of sound-absorbing and sound insulation textiles as a new-type noise reduction materials have drawn much attention because they can provide wider sound absorption band than traditional textiles and lighter, more softer, more breathable and easier to process than traditional noise reduction materials. Consequently, significant research interest in the field of noise control has been directed into the research of polymer composites based on textile materials. In this paper, a review of the research progress of soft textiles of sound-absorbing and sound insulation materils from three aspects of novel type fiber, functional fillers of noise reduction and soft noise reduction composites was presented. Furthermore, the preparation method and the developing trend of soft noise-reducing textiles were summarized. 国家重点研发计划(2016YFC0400503-02);新疆自治区重大专项(2016A03006);中国纺织工业联合会科技指导性项目(2017011)
[1] | DEMIRYUREK O, AYDEMIR H. Sound absorbing properties of roller blind curtain fabrics[J]. Journal of Industrial Textiles, 2016, 47(1):3-19. |
[2] | NAYAK R, PADHYE R, FERGUSSON S. Identification of natural textile fibres. In:Handbook of natural fibres, vol 1. Types, properties and factors affecting breeding and cultivation[M]. Witney:Woodhead Publishing Ltd., 2012:314. |
[3] | PATNAIK A, MVUBU M, MUNIYASAMY S, et al. Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies[J]. Energy and Buildings, 2015, 92:161-169. |
[4] | 杨文娟, 焦晓宁. 非织造布汽车吸音隔音材料的研制[J]. 纺织导报, 2005(11):92-94. YANG W J, JIAO X N. Development of sound absorption material for nonwoven fabric automobiles[J]. Textile Herald, 2005(11):92-94(in Chinese). |
[5] | HARTING H. Fibre for an acoustic insulating material, especially for sound dampers compressed air devices. U. S. Patent Application:11/658291[P]. 2008-07-03. |
[6] | SUVARIA F, ULCAY Y, MAZEC B, et al. Acoustical absorptive properties of spunbonded nonwovens made from islands-in-the-sea bicomponent filaments[J]. The Journal of the Textile Institute, 2013, 104(4):438-445. |
[7] | ABDELFATTAH M A, IBRAHIM G E, et al. Using nonwoven hollow fibers to improve cars interior acoustic properties[J]. Life Science Journal, 2011, 8(1):344-351. |
[8] | JIANG S, XU Y, ZHANG H, et al. Seven-hole hollow polyester fibers as reinforcement in sound absorption chlorinated polyethylene composites[J]. Applied Acoustics, 2012, 73(3):243-247. |
[9] | XIANG H, WANG D, LIU H, et al. Investigation on sound absorption properties of kapok fibers[J]. Chinese Journal of Polymer Science, 2013, 31(3):521-529. |
[10] | LIU X T, LI L, YAN X, et al. Sound-absorbing properties of kapok fiber nonwoven composite at low-frequency[J]. Advanced Materials Research, 2013, 821-822:329-332. |
[11] | HASSANZADEH S, HASANI H, ZARREBINI M. Analysis and prediction of the noise reduction coefficient of lightly needled estabragh (milkweed)/polypropylene[J]. Journal of the Textile Institute, 2014, 105(3):256-263. |
[12] | NA Y, LANCASTER J, CASALI J, et al. Sound absorption coefficients of micro-fiber fabrics by reverberation room method[J]. Textile Research Journal, 2007, 77(5):330-335. |
[13] | TASCAN M, D P, VAUGHN E A, et al. Effects of fiber denier, fiber cross-sectional shape and fabric density on acoustical behavior of vertically lapped nonwoven fabrics[J]. Journal of Engineered Fabrics & Fibers, 2008, 3(2):1136-1139. |
[14] | YILMAZ N D, BANKS-LEE P, POWELL N B, et al. Effects of porosity, fiber size, and layering sequence on sound absorption performance of needle-punched nonwovens[J]. Journal of Applied Polymer Science, 2011, 121(5):3056-3069. |
[15] | NAYAK R, PADHYE R, KYRATZIS I L, et al. Recent advances in nanofibre fabrication techniques[J]. Textile Research Journal, 2012, 82(2):129-147. |
[16] | LIPPITZ N, ROSLER J, HINZE B. Potential of metal fibre felts as passive absorbers in absorption silencers[J]. Metals, 2013, 3(1):150-158. |
[17] | SHEN Y, JIANG G. Effects of different parameters on acoustic properties of activated carbon fiber felts[J]. Journal of the Textile Institute, 2013, 105(4):392-397. |
[18] | 何琳, 朱海潮. 声学理论与应用工程[M]. 北京:科学出版社, 2006:196. HE L, ZHU H C. Acoustic theory and application engineering[M]. Beijing:Science Press, 2006:196(in Chinese). |
[19] | 罗以喜, 奚柏君. 非织造降噪复合材料的研究[J]. 纺织学报, 2004, 25(4):64-66. LUO Y X, XI B J. Research on non-woven noise reduction composites[J]. Journal of Textile, 2004, 25(4):64-66(in Chinese). |
[20] | 刘慧. 填充物对聚氯乙烯基柔性隔音复合材料性能影响的研究[D]. 杭州:浙江理工大学, 2012. LIU H. Study on performance impacet of filler to PVC flexible insulation composite material[D]. Hangzhou:Zhejiang University of Technology, 2012(in Chinese). |
[21] | CANBOLAT S, KUT D, DAYIOGLU H. Investigation of pumice stone powder coating of multilayer surfaces in relation to acoustic and thermal insulation[J]. Journal of Industrial Textiles, 2013, 44(4):639-661. |
[22] | JUN Y, KIM M, KANG K, et al. Evaluation of PP/clay composites as soundproofing material[J]. Polymers & Polymer Composites, 2014, 22(1):65-72. |
[23] | 何冬林, 郭占成, 廖洪强, 等. 多孔吸声材料的研究进展及发展趋势[J]. 材料导报, 2012, 26(s1):303-306. HE D L, GUO Z C, LIAO H Q, et al. Research progress and development trend of porous absorption materials[J]. Material Guide, 2012, 26(s1):303-306(in Chinese). |
[24] | 程利乐. 高填充SSP等材料的PVC基柔性隔声复合材料的研究[D]. 杭州:浙江理工大学, 2010. CHENG L L. Study on PVC-based flexible sound insulation composites filled with SSP and other materials[D]. Hangzhou:Zhejiang University of Technology, 2010(in Chinese). |
[25] | 孙朋. 钢渣多孔吸声材料的制备及吸声性能研究[D]. 北京:北京科技大学, 2015. SUN P. Preparation of porous sound-absorbing material using steel slag and its sound absorption properties[D]. Beijing:Beijing University of Science and Technology, 2015(in Chinese). |
[26] | 钟祥璋, 罗小华, 冬利. 覆面层对玻璃棉吸声性能的影响[J]. 应用声学, 1998(4):41-43. ZHONG X Z, LUO X H, DONG L. Effect of overlay layer on sound absorbing property of glass wool[J]. Applied Acoustics, 1998(4):41-43(in Chinese). |
[27] | 王建忠, 汤慧萍, 敖庆波, 等. 金属纤维多孔材料复合结构的声学性能[J]. 中国材料进展, 2017, 36(7-8):550-556. WANG H Z, TANG H P, AO Q B, et al. Acoustic performance of complex structure made by porous metal fibers materials[J]. Progress of Chinese Materials, 2017, 36(7-8):550-556(in Chinese). |
[28] | LIANG S, XIU Y, WANG H. A research on sound insulation characteristics and processing of the embedded and co-cured composite damping structures[J]. Journal of Composite Materials, 2013, 47(9):1169-1177. |
[29] | 杨天兵, 傅雅琴. 蜂窝织物增强聚氯乙烯复合材料的隔音性能[J]. 纺织学报, 2011(6):65-70. YANG T B, FU Y Q. Sound insulation of honeycomb weave fabric reinforced polyvinyl chloride composite[J]. Journal of Textile, 2011(6):65-70(in Chinese). |
[30] | 李康. 层合多孔吸声隔音复合材料[D]. 上海:东华大学, 2011. LI K. Sound absorption and insulation of laminated porous nitrile rubber-based composite materials[D]. Shanghai:Donghua University, 2011(in Chinese). |
[31] | VENKATARAMAN M, MISHRA R, ARUMUGAM V, et al. Acoustic properties of aerogel embedded nonwoven fabrics. 6th International Conference on Nanomaterials-Research & Application November 5th-7th, Hotel Voronez I,2014. |
[32] | 赖冬志, 姚跃飞, 陈文兴, 等. 化学镀铁镍合金织物的隔音性能的研究[J]. 浙江工程学院学报. 2003, 20(4):12-15. LAI D Z, YAO Y F, CHEN W X, et al. On sound insulation property of textile electroless plating with Fe-Ni alloy[J]. Journal of Zhejiang Institute of Engineering, 2003, 20(4):12-15(in Chinese). |
[33] | 李闪. 剪切增稠流体处理织物对复合材料低频隔音性能的影响[D]. 杭州:浙江理工大学, 2013. LI S. Effect of fabric treated with shear thickening fluid on low-frequency sound insulation property of composites[D]. Hangzhou:Zhejiang University of Technology, 2013(in Chinese). |
[34] | 姚跃飞, 罗勇波, 高磊, 等. 聚氯乙烯基隔声材料中填充炼钢炉渣粉[J]. 复合材料学报. 2008, 25(2):74-79. YAO Y F, LUO Y B, GAO L, et al. PVC sound insulation material filled with steel-smelting scoria[J]. Acta Materiae Compositae Sinica, 2008, 25(2):74-79(in Chinese). |
[35] | LI S, WANG Y, DING J, et al. Effect of shear thickening fluid on the sound insulation properties of textiles[J]. Textile Research Journal, 2013, 84(9):897-902. |
[36] | ANDERSEN Z J, SRAM R J, ACASNY M, et al. Newborns health in the danube region:Environment, biomonitoring, interventions and economic benefits in a large prospective birth cohort study[J]. Environment International, 2016, 88:112-122. |
[37] | HUANG J, DENG F, WU S, et al. The impacts of short-term exposure to noise and traffic-related air pollution on heart rate variability in young healthy adults[J]. Journal of Exposure Science & Environmental Epidemiology, 2013, 23(5):559-564. |
[38] | S?RENSEN M, HVIDBERG M, ANDERSEN Z J, et al. Road traffic noise and stroke:A prospective cohort study[J]. European Heart Journal, 2011, 32(6):737-744. |
[39] | FRANSSEN E A, VAN WIECHEN C M, NAGELKERKE N J, et al. Aircraft noise around a large international airport and its impact on general health and medication use[J]. Occupational and Environmental Medicine, 2004, 61(5):405-413. |
[40] | THAKUR N, BATRA P, GUPTA P. Noise as a health hazard for children, time to make a noise about it[J]. Indian Pediatr, 2016, 53(2):111-114. |
[41] | 汤慧萍, 朱纪磊, 葛渊, 等. 纤维多孔材料梯度结构的吸声性能研究[J]. 稀有金属材料与工程, 2007, 36(12):2220-2223. TANG H P, ZHU J L, GE Y, et al. Sound absorbing characteristics of fibrous porous materials gradient structure[J]. Rare Metal Materials and Engineering, 2007, 36(12):2220-2223(in Chinese). |
[42] | KALINOVA K, SANETRNIK F, JIRSAK O, et al. Layered sound absorptive non-woven fabric. U. S. Patent Application:11/911135[P]. 2006-10-19. |
[43] | MOHROVA J, KALINOVA K. Different structures of pva nanofibrous membrane for sound absorption application[J]. Journal of Nanomaterials, 2012, 2012(2):2449-2464. |
[44] | KALINOVA K, OZTURK M K, KOMAREK M. Open and closed tube method for determination of resonance frequencies of nanofibrous membrane[J]. Journal of the Textile Institute, 2016, 107(8):1068-1078. |
[45] | STRANSKA D, MARES L, JIRSAK O, et al. Production method of layered sound absorptive non-woven fabric. U. S. Patent Application:12/522410[P]. 2008-07-17. |
[46] | NA Y, AGNHAGE T, CHO G. Sound absorption of multiple layers of nanofiber webs and the comparison of measuring methods for sound absorption coefficients[J]. Fibers and Po-lymers, 2012, 13(10):1348-1352. |
[47] | WANG C, TORNG J. Experimental study of the absorption characteristics of some porous fibrous materials[J]. Applied Acoustics, 2001, 60(4):447-459. |
[48] | 张波, 陈天宁, 冯凯, 等. 烧结金属纤维多孔材料的高温吸声性能[J]. 西安交通大学学报. 2008, 42(11):1327-1331. ZHANG B, CHEN T N, FENG K, et al. Sound absorption properties of sintered fibrous metals under high temperature conditions[J]. Xi'an Jiaotong University, 2008, 42(11):1327-1331(in Chinese). |
[49] | 敖庆波, 汤慧萍, 朱纪磊, 等. FeCrAl纤维多孔材料梯度结构吸声性能的研究[J]. 功能材料, 2009, 40(10):1764-1766. AO Q B, TANG H P, ZHU J L, et al. Study on sound absorption performance of FeCrAl fibrous porous materials gradient structure[J]. Functional Materials, 2009, 40(10):1764-1766(in Chinese). |
[50] | 刘世锋, 汤慧萍, 刘波, 等. 钛纤维多孔材料孔径分布与吸声性能研究[J]. 四川大学学报(自然科学版), 2014, 51(1):160-164. LIU S F, TANG H P, LIU B, et al. Studies of sound absorption properties and pore size distribution for titanium fiber porous materials[J]. Journal of Sichuan University (Natural Science Edition), 2014, 51(1):160-164(in Chinese). |
[51] | 敖庆波, 王建忠, 李爱君, 等. 金属纤维多孔材料的吸声性能[J]. 稀有金属材料与工程. 2017, 46(2):387-391. AO Q B, WANG J Z, LI A J, et al. Sound absorption properties of fibrous porous metals[J]. Rare Metal Materials and Engineering, 2017, 46(2):387-391(in Chinese). |
[52] | CHEN Y, JIANG N. Carbonized and activated non-wovens as high-performance acoustic materials:Part I-Noise absorption[J]. Textile Research Journal, 2007, 77(10):785-791. |
[53] | CHEN Y, JIANG N. Carbonized and activated non-woven as high performance acoustic materials:Part Ⅱ-Noise insulation[J]. Textile Research Journal, 2009, 79(3):213-218. |
[54] | SHEN Y, JIANG G. Sound absorption properties of compo-site structure with activated carbon fiber felts[J]. Journal of the Textile Institute, 2014, 105(10):1100-1107. |
[55] | SHEN Y, JIANG G. The influence of production parameters on sound absorption of activated carbon fiber felts[J]. Journal of the Textile Institute, 2015, 107(9):1144-1149. |
[56] | 傅雅琴, 倪庆清, 姚跃飞, 等. 玻璃纤维织物/聚氯乙烯复合材料隔声性能[J]. 复合材料学报, 2005, 22(5):94-99. FU Y Q, NI Q Q, YAO Y F, et al. Sound insulation performance of a glass fabric/PVC composite material[J]. Acta Materiae Compositae Sinica, 2005, 22(5):94-99(in Chinese). |
[57] | 姚跃飞, 高磊, 杨琼丽, 等. 漂珠填充聚氯乙烯基复合材料的隔声性能[J]. 高分子材料科学与工程. 2009, 25(11):61-64. YAO Y F, GAO L, YANG Q L, et al. Sound insulation property of pvc matrix composite material filled with cenosphere fly ash[J]. Polymer Materials Science and Engineering, 2009, 25(11):61-64(in Chinese). |
[58] | 程文彬. 纺织材料隔声性能的研究[D]. 上海:中国纺织大学, 1997. CHENG W B. Research on sound insulation of textile materials[D]. Shanghai:China Textile University, 1997(in Chinese). |
[59] | STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100):282-286. |
[60] | 傅强, 蔡俊, 傅雅琴, 等. 氧化石墨烯/丁腈橡胶-聚氯乙烯复合材料的隔声性能[J]. 复合材料学报. 2017, 34(7):1401-1407. FU Q, CAI J, FU Y Q, et al. Sound insulation performance of graphene oxide/NBR-PVC composites[J]. Acta Materiae Compositae Sinica, 2017, 34(7):1401-1407(in Chinese). |
[61] | WANG Y, ZHU Y, FU X, et al. Effect of TW-ZnO/SiO2-compounded shear thickening fluid on the sound insulation property of glass fiber fabric[J]. Textile Research Journal, 2014, 85(9):980-986. |
[62] | HOFFMANN B, MOEBUS S, STANG A, et al. Residence close to high traffic and prevalence of coronary heart disease[J]. European Heart Journal, 2006, 27(22):2696-2702. |
[63] | BUXTON R T, MCKENNA M F, MENNITT D, et al. Noise pollution is pervasive in U. S. protected areas[J]. Science, 2017, 356(6337):531-533. |
[64] | GUPTA A, GUPTA A, JAIN K, et al. Noise pollution and impact on children health[J]. Indian Journal of Pediatrics, 2018, 85(4):1-7. |
[65] | PIEREN R, HEUTSCHI K. Predicting sound absorption coefficients of lightweight multilayer curtains using the equivalent circuit method[J]. Applied Acoustics, 2015, 92:27-41. |
[66] | PIEREN R, SCHAFFER B, SCHOENWALD S, et al. Sound absorption of textile curtains-theoretical models and validations by experiments and simulations[J]. Textile Research Journal, 2016, 88(1):36-48. |
[67] | LIU J, BAO W, SHI L, et al. General regression neural network for prediction of sound absorption coefficients of sandwich structure nonwoven absorbers[J]. Applied Acoustics, 2014, 76:128-137. |
[68] | YANG Y, CHEN Z, CHEN Z, et al. Sound insulation properties of sandwich structures on glass fiber felts[J]. Fibers and Polymers, 2015, 16(7):1568-1577. |
[69] | MVUBU M, PATNAIK A, ANANDJIWALA R D. Process parameters optimization of needle-punched nonwovens for sound absorption application[J]. Journal of Engineered Fibers and Fabrics, 2015, 10(4):47-54. |
[70] | 栾巧丽, 邱华, 成钢, 等. 羊毛及其混合纤维非织造材料的吸声性能[J]. 纺织学报, 2017, 38(3):67-71. LUAN Q L, QIU H, CHENG G, et al. Sound absorption properties of nonwoven material based on wool and its hybrid fibers[J]. Journal of Textile, 2017, 38(3):67-71(in Chinese). |
[71] | TASCAN M, VAUGHN E A. Effects of total surface area and fabric density on the acoustical behavior of needlepunched nonwoven fabrics[J]. Textile Research Journal, 2008, 78(4):289-296. |
[72] | KALINOVA K. Nanofibrous resonant membrane for acoustic applications[J]. Journal of Nanomaterials, 2011:1-6. |
[73] | KALINOVA K. Sound absorptive light comprising nanofibrous resonant membrane applicable in room acoustics[J]. Building Services Engineering Research and Technology, 2017:014362441773340. |
[74] | 范晓瑜, 姚跃飞, 虞华东, 等. 蛭石/PVC复合材料的隔声性能研究[J]. 浙江理工大学学报, 2014, 31(6):647-650. FAN X Y, YAO Y F, YU H D, et al. Reaearch on sound insulation property of vermiculite/PVC composite[J]. Journal of Zhejiang Sci-Tech University, 2014, 31(6):647-650(in Chinese). |
[75] | LIN J, LI T, HSU Y, et al. Preparation and property evaluation of sound-absorbing/thermal-insulating PU composite boards with cushion protection[J]. Fibers and Polymers, 2014, 15(7):1478-1483. |
[76] | KIM M, YAN J, KANG K, et al. Soundproofing properties of polypropylene/clay/carbon nanotube nanocomposites[J]. Journal of Applied Polymer Science, 2013, 130(1):504-509. |