全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Ti/Al3Ti金属间化合物基层状复合材料抗侵彻性能数值模拟
Numerical simulation of ballistic penetration of Ti/Al3Ti metal-intermetallic laminate composites

DOI: 10.13801/j.cnki.fhclxb.20171206.003

Keywords: 金属间化合物基层状复合材料,弹道侵彻,数值模拟,微观结构,LS-DYNA
metal-intermetallic laminate composites
,ballistic impact,numerical simulation,microstructure,LS-DYNA

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用LS-DYNA非线性有限元软件对Ti/Al3Ti金属间化合物基层状(MIL)复合材料靶板的弹道侵彻过程进行了数值模拟。考察了等厚度下Ti体积分数、层数和材料梯度分布对复合材料抗侵彻性能的影响。结果表明,Ti体积分数约为20%时,靶板的抗侵彻性能最好。随着层数的增加,复合材料靶板的抗侵彻性能逐渐增强;但超过25层后,靶板的抗侵彻性能逐渐趋于稳定。不同铺层结构功能梯度板的抗侵彻性能相差较大,正向铺层梯度板的抗侵彻性能明显优于等厚均质复合材料靶板。 The ballistic penetration process of projectile with different initial velocities impacting Ti/Al3Ti metal-intermetallic laminate (MIL) composites target was simulated using LS-DYNA nonlinear dynamic explicit finite element code. The effects of the Ti volume fraction, the stack number and the optimal distribution of material on anti-penetrating performance of laminated-composite target plate were studied. The results show that the volume fraction of Ti has an important influence on the penetration resistance of the composite target. While up to 20%, it appears the best anti-penetration performance. The ballistic resistance of composite target plate increases with the increase of the layer number. When the layer number exceeds 25, the ballistic performance of composite target plate gradually stabilizes. The anti-penetration performance of the functionally graded plates with different lamination structures is quite different, the positive gradient plates is obviously superior to that of the equal thickness homogeneous plate. 国家自然科学基金(51201155);教育部博士点基金(20101420120006);山西省自然科学基金(2012011019-1)

References

[1]  RAWER J C, ALMAN D E. Fracture characteristics of metal/intermetallic laminar composites produced by reaction sintering and hot pressing[J]. Composites Science and Techno-logy, 1995, 54:379-384.
[2]  ADHARAPURAPU R R, VECCHIO K S, JIANG F, et al. Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti-Al3Ti metal-intermetallic laminate composites[J]. Metallurgical & Materials Transactions A, 2005, 36(6):1595-1608.
[3]  ABRATE S. Impact on laminated composites:Recent advances[J]. Applied Mechanics Reviews, 1994, 47(11):517-531.
[4]  MADHU V, BHAT T B. Armour protection and affordable protection for futuristic combat vehicles[J]. Defence Science Journal, 2011, 61(4):394-402.
[5]  HARACH D J. Processing, properties, and ballistic performance of Ti-Al3Ti metal-intermetallic laminate (MIL) composites[D]. California:University of California, 2000.
[6]  ZELEPUGIN S A, ZELEPUGIN A S. Numerical Simulation of multilayer composites failure under dynamic loading[J]. Applied Mechanics & Materials, 2015, 756:408-413.
[7]  CAO Y, ZHU S, GUO C, et al. Numerical investigation of the ballistic performance of metal-intermetallic laminate composites[J]. Applied Composite Materials, 2014, 22(4):1-20.
[8]  韩肖肖, 张学义, 周培俊, 等. 基于SPH-FEM法Ti/Al3Ti装甲防护性能研究[J]. 兵器材料科学与工程, 2017(1):66-72. HAN Xiaoxiao, ZHANG Xueyi, ZHOU Peijun, et al. Armor protection performance of Ti/Al3Ti based on SPH-FEM method[J]. Ordnance Material Science and Engineering, 2017(1):66-72(in Chinese).
[9]  AHN J H, NGUYEN K H, PARK Y B, et al. A numerical study of the high-velocity impact response of a composite laminate using LS-DYNA[J]. International Journal of Aeronautical & Space Sciences, 2010, 11(3):221-226.
[10]  陈晓, 周宏. 叠层靶板弹击实验及弹道侵彻机理的数值模拟研究[J]. 爆炸与冲击, 2003, 23(6):509-515. CHEN X, ZHOU H. Numerical simulation of ballistic penetration of bullet proof laminated composite panels[J]. Explosion and Shock Wave, 2003, 23(6):509-515(in Chinese).
[11]  HOLMQUIST T J, TEMPLETON D W, BISHNOI K D. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications[J]. International Journal of Impact Engineering, 2001, 25(3):211-231.
[12]  LI T, GRIGNON F, BENSON D J, et al. Modeling the elastic properties and damage evolution in Ti-Al3Ti metal-intermetallic laminate (MIL) composites[J]. Materials Science & Engineering A, 2004, 374(1):10-26.
[13]  JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1):31-48.
[14]  JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the Sseventh International Symposium on Ballistics, Netherlands, 1983:541-547.
[15]  LEE J K. Analysis of multi-layered materials under high velocity impact using CTH[D]. Ohio:Air Force Institute of Technology, 2008.
[16]  LEE M, YOO Y H. Analysis of ceramic/metal armour systems[J]. International Journal of Impact Engineering, 2001, 25(9):819-829.
[17]  PERNAS-SáNCHEZ J, ARTERO-GUERRERO J A, VARAS D, et al. Experimental analysis of normal and oblique high velocity impacts on carbon/epoxy tape laminates[J]. Composites Part A:Applied Science and Manufacturing, 2014, 60(3):24-31.
[18]  侯海量, 朱锡, 李伟. 轻型陶瓷/金属复合装甲抗弹机理研究[J]. 兵工学报, 2013, 34(1):105-114. HOU H L, ZHU X, LI W. Investigation on bullet proof mechanism of light ceramic/steel composite armor[J]. Acta Armam, 2013, 34(1):105-114(in Chinese).
[19]  STERNBERG J, ORPHAL D L. A note on the high velocity penetration of aluminum nitride[J]. International Journal of Impact Engineering, 1997, 19(7):647-651.
[20]  陈维平, 何曾先, 黄丹, 等. SiC/Al合金层状复合材料的弹道冲击动态响应[J]. 华南理工大学学报(自然科学版), 2010, 38(9):90-95. CHEN W P, HE Z X, HUANG D, et al. Dynamic response of laminated SiC/Al composites subjected to ballistic impact[J]. Journal South China University Technology:Natural Science Edtion, 2010, 38(9):90-95(in Chinese).
[21]  HETHERINGTON J G. Energy and momentum changes during ballistic perforation[J]. International Journal of Impact Engineering, 1996, 18(3):319-337.
[22]  虞青俊, 李玉龙, 邓琼, 等. SiCP/Al功能梯度装甲板抗侵彻性能的试验与数值模拟[J]. 复合材料学报, 2007, 24(5):6-12. YU Qingjun, LI Yulong, DENG Qiong, et al. Penetration of SiCP/Al functionally graded plates-Experiment and numerical simulation[J]. Acta Materiae Compositae Sinica, 2007, 24(5):6-12(in Chinese).
[23]  VECCHIO K S. Synthetic multifunctional metallic-intermetallic laminate composites[J]. JOM, 2005, 57(3):25-31.
[24]  GRUJICIC M, SNIPES J S, RAMASWAMI S. Penetration resistance and ballistic-impact behavior of Ti/TiAl3 metal/intermetallic laminated composites (MILCs):A computational investigation[J]. AIMS Materials Science, 2016, 3(3):686-721.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133