全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

玻璃钢纤维增强塑料薄壁管抗冲击性能的实验研究
Experimental study on impact performance of glass fiber reinforced plastic thin-walled tubes

DOI: 10.13801/j.cnki.fhclxb.20180209.005

Keywords: 玻璃钢纤维增强塑料(GFRP)薄壁管,分离式Hopkinson压杆,动态应力-应变曲线,抗冲击,能量吸收特性
glass fiber reinforced plastic (GFRP) thin-walled tubes
,split Hopkinson pressure bar,dynamic stress-strain curve,impact resistance,energy absorption property

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用分离式Hopkinson压杆(SHPB)实验系统,研究了玻璃钢纤维增强塑料(GFRP)薄壁管在低速冲击载荷作用下的抗冲击性能,探讨了薄壁管的截面形状和壁厚对其冲击破坏模式、动态应力-应变曲线和比吸能值(SEA)的影响。实验结果表明:GFRP圆管的动态切线模量较方管的大,同壁厚的圆管的抗冲击性能较方管好;方管随壁厚的适当增加,抗冲击性能也增加。通过综合分析抗冲击性能评价参数,发现GFRP方管的吸能性能较圆管的好,且随壁厚的略微增加,吸能性能增强。与铝合金圆管相比,在相同实验条件下,GFRP圆管的动态压缩模量和冲击应力峰值较铝合金圆管大,峰值应变值较铝合金圆管小,比吸能值较铝合金圆管的大,GFRP管的抗冲击性能也较铝合金圆管好。其结果可为GFRP管类结构的优化设计及工程应用提供基础实验数据和给予理论指导。 Glass fiber reinforced plastic (GFRP) thin-walled tubes have excellent erosion resistant capability and highly feasible design ability, and thus have been shown broad applications in oil and construction industrials. In this paper, we utilized Hopkinson pressure bar(SHPB) system to explore the impact resistance, deformation and failure mode, and dynamic response of GFRP thin-walled tube with different wall thicknesses and shapes. Experimental results prove that the circular tubes possess higher dynamic compression modulus and better impact resistance while the square tubes exhibit more superior energy absorption property. In addition, those performances can be improved with thicker wall. Compared to other traditional aluminum alloy tubes, GFRP tubes show better energy absorption capability. Overall, this study provides significant insights for structural optimization of GFRP tubes and design guidelines on engineer applications. 国家自然科学基金(11572161;11302109);机械结构强度与振动国家重点实验室(SV2016-KF-17);浙江省“近海结构冲击安全防护与健康监测”重点科技创新团队(2013TD21)

References

[1]  PALANIVELU S, PAEPEGEM W V, DEGRIECK J, et al. Experimental study on the axial crushing behaviour of pultruded composite tubes[J]. Polymer Testing, 2010, 29(2):224-234.
[2]  OCHELSKI S, GOTOWICKI P. Experimental assessment of energy absorption capability of carbon-epoxy and glass-epoxy composites[J]. Composite Structures, 2009, 87(3):215-224.
[3]  MURALIKANNAN R, VELMURUGAN R, ESWARAPRASAD G L. Energy absorption characteristics of circular composites tubes in quasi static and impact loading[C]. Proceedings of the IMPLAST 2010 Conference. USA:Society for Experimental Mechamics, 2010.
[4]  BISAGNI C. Experimental investigation of the collapse modes and energy absorption characteristics of composite tubes[J]. International Journal of Crashworthiness, 2009, 14(4):365-378.
[5]  KATHIRESAN M, MANISEKAR K, MANIKANDAN V. Crashworthiness analysis of glass fibre/epoxy laminated thin walled composite conical frusta under axial compression[J]. Composite Structures, 2014, 108:584-599.
[6]  VELMURUGAN R, GUPTA N K, SOLAIMURUGAN S, et al. The effect of stitching on FRP cylindrical shells under axial compression[J]. International Journal of Impact Engineering, 2004, 30:923-938.
[7]  GHASEMNEJAD H, BLACKMAN B R K, HADAVINI A H, et al. Experimental studies on fracture characterisation and energy absorption of GFRP composite box structures[J]. Composite Structures, 2009, 88(2):253-261.
[8]  AHMAD Z, ABDULLAH M R, TAMIN M N. Experimental and numerical studies of fiber metal laminate (FML) thin-walled tubes under impact loading[J]. Mechanical and Materials, 2015, 70:433-443.
[9]  HSU S S, JONES N. Quasi-static and dynamic axial crushing of thin-walled circular stainless steel, mild steel and aluminum alloy tubes[J]. International Journal of Crashworthiness, 2004, 9(2):195-217.
[10]  MARZBANRAD J, MEHDIKHANLO M, POUR A S. An energy absorption comparison of square, circular, and elliptic steel and aluminum tubes under impact loading[J]. Turkish Journal of Engineering and Environmental Sciences, 2009, 33(3):159-166.
[11]  TAI Y S, HUANG M Y, HU H T. Axial compression and energy absorption characteristics of high-strength thin-walled cylinders under impact load[J]. Theoretical and Applied Fracture Mechanics, 2010, 53(1):1-8.
[12]  THAMBIRATNAMD P, NAGEL G M. A numerical study on the impact response and energy absorption of tapered thin-walled tubes[J]. International Journal of Mechanical Sciences, 2004, 46(2):201-216.
[13]  SANKAR H R, PARAMESWARAN V. Effect of multiple holes on dynamic buckling of stubby shells:An experimental and numerical investigation[J]. International Journal of Impact Engineering, 2016, 96:129-145.
[14]  MAHMOUDABADI M Z, KARAMNEJAD A, SADIGHI M. A quasi-static and low-velocity impact crushing investigation on a metal square tube[J]. Proceedings of the Institution of Mechanical Engineers:Part C-Journal of Mechanical Engineering Science, 2011, 225(4):771-779.
[15]  余同希, 卢国兴, 华云龙. 材料与结构的能量吸收[M]. 北京:化学工业出版社, 2005:235-246. YU T X, LU G X, HUA Y L. Energy absorption of structures and materials[M]. Beijing:Chemical Industry Press, 2005:235-246(in Chinese).
[16]  GUADES E, ARAVINTHAN T, MANALO A, et al. Damage modelling of repeatedly impacted square fibre-reinforced polymer composite tube[J]. Materials and Design, 2013, 47(9):687-697.
[17]  MAHDI E, SEBAEY T A. An experimental investigation into crushing behavior of radially stiffened GFRP composite tubes[J]. Thin-Walled Structures, 2014, 76(76):8-13.
[18]  TANG Z P, LI D. Experimental investigation of axial impact buckling response of pseudo-elastic NiTi cylindrical shells[J]. International Journal of Impact Engineering, 2012, 39(1):28-41.
[19]  WANG L, LIU WQ, FANG Y, et al. Axial crush behavior and energy absorption capability of foam-filled GFRP tubes manufactured through vacuum assisted resin infusion process[J]. Thin-Walled Structures, 2016, 98:263-273.
[20]  PICKETT L, DAYAL V. Effect of tube geometry and ply-angle on energy absorption of a circular glass/epoxy crush tube-A numerical study[J]. Composites Part B:Engineering, 2012, 43(8):2960-2967.
[21]  YANG K J, CHEN Y L, LIU S B, et al. Internally nested self-locked tube system for energy absorption[J]. Thin-Walled Structures, 2017, 119:371-384.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133