|
- 2017
基于第一抗热震因子的BN纳米管/Si3N4复合材料抗热震性能评价
|
Abstract:
利用Kingery抗热震断裂理论构建了BN纳米管(BNNTs)强韧化陶瓷复合材料的第一抗热震因子模型,通过真空热压烧结法制备了四组BNNTs含量分别为0.5wt%、1.0wt%、1.5wt%和2.0wt%的BNNTs/Si3N4复合材料,并采用水浴淬冷法和三点弯曲法测试了复合材料的抗热震性能(震后弯曲强度和临界热震断裂温差)。测试结果验证了在急剧加热和急剧冷却条件下第一抗热震因子模型的正确性。结果表明:添加BNNTs使BNNTs/Si3N4复合材料第一抗热震因子增大,抗热震性能提升。分布在晶界上的BNNTs起到裂纹钉扎、桥联和裂纹偏转作用,增加了裂纹扩展的阻力;纳米管孔隙的存在改变了裂纹扩展路径,提高了BNNTs/Si3N4的断裂韧度,从而有效提高了其抗热震断裂能力。 The first heat shock factor model of BNNTs reinforced ceramic composites was constructed based on Kingery thermal shock theory. The BNNTs/Si3N4 composites with mass fractions of 0.5wt%, 1.0wt%, 1.5wt% and 2.0wt% were prepared by hot pressed sintering process. The thermal shock resistance of the BNNTs/Si3N4 composites, including bending strength after thermal shock and critical fracture temperature difference, was tested by water bath quenching and three point bending method. The first heat shock factor model is verified by the thermal shock resistance test, which indicates that the thermal shock performance of BNNTs/Si3N4 is enhanced by the BNNTs. BNNTs which are distributed on the grain boundary make the crack pinned and deflected, increasing the crack propagation resistance. Moreover, the hole of the nanotube changes the crack propagation path, improving the fracture resistance and thermal shock resistance of the BNNTs/Si3N4 composites. 国家自然科学基金(51372101;51405195);泰山学者工程专项经费
[1] | TAMAS C, DUSAN N, JAN D, et al. Nanoindentation induced deformation anisotropy in β-Si3N4 ceramic crystals[J]. Journal of the European Ceramic Society, 2016, 36(12): 3059-3066. |
[2] | WANG C, WANG H J, QIAO R Q, et al. Fabrication and thermal shock resistance of β-Si3N4-based environmental barrier coating on porous Si3N4 ceramic[J]. Ceramics International, 2016, 42(12): 14222-14227. |
[3] | HUI M, ZHAO G K, LIU G X, et al. Effect of pore size distribution on the mechanical performance of carbon foams reinforced by in situ grown Si3N4 whiskers[J]. Journal of the European Ceramic Society, 2015, 35(16): 4431-4435. |
[4] | YU H H, WANG S R, YANG L Y. R-curve behavior of Si3N4/BNNT composites[J]. Applied Composites Materials, 2013, 20(5): 947-960. |
[5] | DU M, BI J Q, WANG W L, et al. Fabrication and mechanical properties of SiO2-Al2O3-BNNPs and SiO2-Al2O3-BNNTs composites[J]. Materials Science and Engineering: A, 2011, 530(15): 669-674. |
[6] | CHEN Y F, BI J Q, WANG W L, et al. Toughening in boron nitride nanotubes/silicon nitride composites[J]. Materials Science and Engineering: A, 2014, 590(10): 16-20. |
[7] | PLUCINSKI M, ZWANZIGER J W. Topological constraints and the Makishima-Mackenzie model[J]. Journal of Non-Crystalline Solids, 2015, 429(1): 20-23. |
[8] | WANG W L, BI J Q, WANG S R, et al. Microstructure and mechanical properties of alumina ceramics reinforced by boron nitride nanotubes[J]. Journal of the European Ceramic Society, 2011, 31(13): 2277-2284. |
[9] | 刘鹏飞, 陶伟明, 郭乙木. 纤维桥连疲劳裂纹扩展的首次穿越扩散过程模型[J]. 复合材料学报, 2004, 21(4): 162-166. LIU P F, TAO W M, GUO Y M. First crossing diffusive process model fiber-bridging fatigue crack growth[J]. Acta Materiae Compositae Sinica, 2004, 21(4): 162-166 (in Chinese). |
[10] | 张嘉振, 白士刚, 周振. 功拉-压加载下纤维增强铝合金层板疲劳裂纹扩展的压载荷效应与预测模型[J]. 复合材料学报, 2012, 29(4): 163-169. ZHANG J Z, BAI S G, ZHOU Z. Effect of compression loading on the fatigue crack growth in fiber reinforced aluminum laminates and prediction model[J]. Acta Materiae Compositae Sinica, 2012, 29(4): 163-169 (in Chinese). |
[11] | KWANGJIN J, JUNICHI T, MOTOYUKI I, et al. Fabrication of Si3N4 ceramics by post-reaction sintering using Si-Y2O3-Al2O3 nanocomposite particles prepared by mechanical treatment[J]. Ceramics International, 2016, 42(10): 11554-11561. |
[12] | 于航海, 王守仁, 杨丽颖. 氮化硼纳米管增强氮化硅复合材料的裂纹扩展阻力行为[J]. 复合材料学报, 2012, 29 (6): 152-158. YU H H, WANG S R, YANG L Y. Crack propagation resistance behavior of Si3N4 composites reinforced by BN nanotubes[J]. Acta Materiae Compositae Sinica, 2012, 29(6): 152-158 (in Chinese). |
[13] | 吴南星, 陈正林, 廖达海. 基于Lamb波在氮化硅陶瓷叶片及其作摩擦材料镀层传播特性的研究[J].陶瓷学报, 2015(1): 83-87. WU N X, CHEN Z L, LAO D H. Lamb wave propagation characteristics in the silicon nitride ceramic blade and its friction material coating[J]. Journal of Ceramics, 2015(1): 83-87 (in Chinese). |
[14] | HU H L, YAO D X, XIA Y F, et al. Fabrication and mechanical properties of SiC reinforced reaction-bonded silicon nitride based ceramics[J]. Ceramics International, 2014, 40(3): 4739-4743. |
[15] | ZHAO Y X, WANG M R, CAO J, et al. Brazing TC4 alloy to Si3N4 ceramic using nano-Si3N4 reinforced AgCu composite filler[J]. Materials & Design, 2015, 76(5): 40-46. |