|
- 2018
芳纶纤维对炭黑/丁苯橡胶复合材料疲劳行为的影响
|
Abstract:
使用短芳纶纤维(AF)增强炭黑/丁苯橡胶(CB/SBR)复合材料,研究AF对复合材料疲劳行为的影响。在应力控制条件下,少量AF的加入使缺口试样的疲劳寿命提高了25.5倍;疲劳使试样的储能模量(G')降低,AF的加入使疲劳后试样的Payne效应降低,G0'/G100'值降低10.5%;复数模量随疲劳周期增加而降低,但少量纤维能使复合材料的复数模量保持在较高的水平,30 000周疲劳下AF-CB/SBR的复数模量仍为CB/SBR的1.73倍;疲劳后AF-CB/SBR复合材料的100%和300%定伸应力随疲劳变形量的增加而先增大后降低,断裂伸长率有所下降。试样疲劳后相对于拉伸变形量,纤维的增强作用产生滞后效应,相对界面滑脱能随疲劳应变幅度的增加而降低; SEM结果显示,疲劳后橡胶基体出现一定的剥离,纤维与橡胶界面受到损伤。 The influences of aramid fiber (AF) on the fatigue behavior of AF reinforced styrene butadiene rubber filled with carbon black composites (AF-CB/SBR) were researched. Under the stress control condition, the fatigue life of notched specimens can be improved 25.5 times with the help of the addition of a small amount of AF. The storage modulus of the rubber samples decreases after the fatigue process and AF in this system can decrease the ratio of G0' and G100' (G0'/G100') to 10.5%, indicating lower Payne effect compared with the one without AF. The complex modulus decreases with the increase of fatigue cycles, while higher complex modulus can be remained in the composites which contain a small amount of AF than the one without AF. The complex modulus of AF-CB/SBR composite was 1.73 times as that of CB/SBR system even if the fatigue cycles have reached to 30000. The stretching stress at 100% and 300% of fatigued sample increases first and then reduces with the increasing of fatigue progress, while the elongation at break decreases. Relative to the deformation, fiber reinforcement has a hysteresis effect, and the relative interfacial slip energy decreases with the increase of fatigue strain amplitude; SEM photos exhibite a certain extent stripping of the rubber matrix and the interface between fiber and rubber is destroyed after the fatigue process. 黔科合重大专项(2013—2016);国家自然科学基金(51761004)
[1] | LUO Z, CHEN W, JIN Z, et al. Epoxy resin modified maleic anhydride-grafted-liquid polybutadiene on the properties of short aramid fiber reinforced natural rubber composite[J]. Polymer Composites, 2017, DOI:10.1002/pc. 24397 |
[2] | 田振辉, 谭惠丰, 谢礼立. 橡胶复合材料疲劳破坏特性[J]. 复合材料学报, 2005, 22(1):32-35. TIAN Zhenhui, TAN Huifeng, XIE Lili. Fatigue damage properties of rubber composite[J]. Acta Materiae Compositae Sinica, 2005, 22(1):32-35(in Chinese). |
[3] | SCHUBEL P M, GDOUTOS E E, DANIEL I M. Fatigue characterization of tire rubber[J]. Theoretical & Applied Fracture Mechanics, 2004, 42(2):149-154. |
[4] | MULLINS L. SOFT of rubber by deformation[J]. Rubber Chemistry & Technology, 2012, 42(1):339-362. |
[5] | 吴卫东, 许涛, 哈德尔别克, 等. 芳纶短纤维与三元乙丙橡胶界面粘合水平评估研究[J]. 橡胶工业, 2012, 59(9):533-536. WU Weidong, XU Tao, BUICK Hardell, et al. Aramid fiber and three EPDM interfacial adhesion level evaluation of[J]. Rubber Industry, 2012, 59(9):533-536(in Chinese). |
[6] | 田振辉, 谭惠丰, 杜星文. 两类橡胶复合材料的疲劳特性[J]. 材料工程, 2008(6):13-15. TIAN Zhenhui, TAN Huifeng, DU Xingwen. Fatigue properties of two kinds of rubber composites[J]. Materials Engineering, 2008(6):13-15(in Chinese). |
[7] | DONG B, LIU C, WU Y P. Fracture and fatigue of silica/carbon black/natural rubber composites[J]. Polymer Testing, 2014, 38:40-45. |
[8] | PAYNE A R, WHITTAKER R E, SMITH J F. Effect of vulcanization on the low-strain dynamic properties of filled rubbers[J]. Journal of Applied Polymer Science, 2010, 16(5):1191-1212. |
[9] | PING Z, SHI X, LI J, et al. The structure change of dynamically fatigued unfilled natural rubber vulcanizates[J]. Journal of Applied Polymer Science, 2010, 115(6):3535-3541. |
[10] | CRUANES C, LACROIX F, BERTON G, et al. Study of the fatigue behavior of a synthetic rubber undergoing cumulative damage tests[J]. International Journal of Fatigue, 2016, 91:322-327. |
[11] | TIAN M, SU L, CAI W, et al. Mechanical properties and reinforcement mechanisms of hydrogenated acrylonitrile butadiene rubber composites containing fibrillar silicate nanofibers and short aramid microfibers[J]. Journal of Applied Polymer Science, 2011, 120(3):1439-1447. |
[12] | КУЧЕРСКИЙ А М, 郭辉. 用拉伸永久变形测定橡胶的松弛性能[J]. 橡胶参考资料, 1983(12):40-41. КУЧЕРСКИЙ А М, GUO Hui. Determination of the relaxation properties of rubber by tensile permanent deformation.[J]. Rubber Reference Materials, 1983(12):40-41(in Chinese). |
[13] | TIAN M, YIN S, ZOU H, et al. Static and dynamic mechanical properties and fracture morphology of EPDM composites containing silicate nanofibers and short PA-66 microfibers[J]. Composites Part B:Engineering, 2011, 42(7):1937-1944. |
[14] | MELNIKOV A Y, LEONOV A I. Damage of unfilled crosslinked rubbers as the scission of polymer chains:Modeling and tensile experiments[J]. Polymer Engineering & Science, 2012, 52(10):2206-2216. |
[15] | 郭义, 赵玉中. 丁苯橡胶市场现状及技术发展趋势[J]. 弹性体, 2008, 18(1):74-78. GUO Yi, ZHAO Yuzhong. Market status and technological development trend of styrene butadiene rubber[J]. Elastomer, 2008, 18(1):74-78(in Chinese). |
[16] | 王昊, 危银涛. 基于疲劳裂纹扩展理论的轮胎橡胶疲劳寿命预测[J]. 轮胎工业, 2016, 36(5):259-266. WANG Hao, WEI Yintao. Fatigue life prediction of tire rubber based on fatigue crack growth theory[J]. Tire Industry, 2016, 36(5):259-266(in Chinese). |
[17] | LI G, ZHANG C, WANG Y, et al. Interface correlation and toughness matching of phosphoric acid functionalized Kevlar fiber and epoxy matrix for filament winding composites[J]. Composites Science & Technology, 2008, 68(15):3208-3214. |
[18] | FR?HLICH J, NIEDERMEIER W, LUGINSLAND H D. The effect of filler-filler and filler-elastomer interaction on rubber reinforcement[J]. Composites Part A:Applied Science & Manufacturing, 2005, 36(4):449-460. |
[19] | 刘宇艳, 万志敏, 杜星文. 周期载荷下聚酯/橡胶复合材料和人造丝/橡胶复合材料的热生成对疲劳行为的影响[J]. 复合材料学报, 2002, 19(2):103-107. LIU Yuyan, WAN Zhimin, DU Xingwen. Effect of heat generation on fatigue behavior of polyester/rubber composites and rayon/rubber composites under cyclic loading[J]. Journal of Composite Materials, 2002, 19(2):103-107(in Chinese). |
[20] | DATTA R, PARKER S, MADE M V D, et al. Increasing fuel economy and durability in truck tires[J]. Rubber World, 2008, 238(6):29. |
[21] | KIM J H, JEONG H Y. A study on the material properties and fatigue life of natural rubber with different carbon blacks[J]. International Journal of Fatigue, 2005, 27(3):263-272. |
[22] | CHAKRABORTY S K, SETUA D K, DE S K. Short jute fiber reinforced carboxylated nitrile rubber[J]. Rubber Chemistry & Technology, 1982, 55(5):1286-1307. |
[23] | MANJUNATHA C M, TAYLOR A C, KINLOCH A J, et al. The tensile fatigue behavior of a GFRP composite with rubber particle modified epoxy matrix[J]. Journal of Reinforced Plastics & Composites, 2010, 29(14):2170-2183. |
[24] | 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶撕裂强度的测定(裤形, 直角形和新月形试样):GB/T 529-2008[S]. 北京:中国标准出版社, 2008. China National Standardization Administration. Rubber, vulcanized or thermoplastic-Determination of tear strength(Trouser, angle and crescent test pieces):GB/T 529-2008[S]. Beijing:Standards Press of China, 2008(in Chinese). |
[25] | 中国国家标准化管理委员会. 硫化橡胶伸张疲劳的测定:GB/T 1688-2008[S]. 北京:中国标准出版社, 2008. China National Standardization Administration. Rubber, vulcanized-Determination of tension fatigue:GB/T 1688-2008[S]. Beijing:Standards Press of China, 2008(in Chinese). |