|
- 2017
干湿循环作用下水泥基复合材料抗氯离子侵蚀性能及其微观结构变化
|
Abstract:
为了进一步揭示干湿循环条件下氯离子对水泥基复合材料的侵蚀机制,分别研究了两种水灰比水泥混凝土、砂浆及净浆三种层次试件在干湿循环条件下的抗氯离子侵蚀性能。结果发现,干湿循环作用能促进氯离子入侵速度,增加氯离子入侵深度和浓度,并且水胶比越大,干湿循环作用影响效果越明显;掺入矿粉能增加水泥基复合材料抗氯离子入侵性能,并且降低干湿循环作用的影响效果。净浆样品侵蚀前后的微观结构变化表明,干湿循环作用下,经氯盐侵蚀后水泥基复合材料净浆试件表层明显有Friedel盐生成,而矿粉的加入明显增加了样品中Friedel盐的生成量。 In order to further reveal the mechanism of chloride erosion to cement matrix composite materials under dry-wet cycling, the resistance to chloride erosion of two kinds of water to cement ratio of cement concrete, mortar and paste specimens under dry-wet cycling were studied. It is found that dry-wet cycling can promote the intrusion speed of chloride ions and increase its invasion depth and concentration. With the increase of water to cement ratio, the above effect of dry-wet cycling gets more obvious. Furthermore, the incorporation of slag can increase the resistance to chloride erosion of cement matrix composite materials and reduce the invasive effect of dry-wet cycling. Meanwhile, the corresponding micro-structural changes before and after chloride erosion under dry-wet cycling show that Friedel's salt is obvious on the surface of paste samples of cement matrix composite materials and adding slag significantly increases the formation of Friedel's salt in the sample. 国家自然科学基金(51308308);浙江省自然科学基金(LY17E080009);水利部水科学与水工程重点实验室(YK914015)
[1] | 陆春华, 刘荣桂, 崔钊玮, 等. 干湿交替作用下受弯开裂钢筋混凝土梁内氯离子侵蚀特性[J]. 土木工程学报, 2014, 47(12):82-90. LU C H, LIU R G, CUI Z W, et al. Study on chloride penetration in flexural cracked reinforced concrete beams subjected to drying-wetting cycles[J]. China Civic Engineering Journal, 2014, 47(12):82-90(in Chinese). |
[2] | 李春秋, 李克非. 干湿交替下表层混凝土中水分传输:理论、试验和模拟[J]. 硅酸盐学报, 2010, 38(7):1151-1159. LI C Q, LI K F. Moisture transport in concrete cover under drying-wetting cycles theory, experiment and modeling[J]. Journal of the Chinese Ceramic Society, 2010, 38(7):1151-1159(in Chinese). |
[3] | YE H L, JIN X Y, JIN N G, et al. Chloride penetration in concrete exposed to cyclic drying-wetting and carbonation[J]. Construction and Building Materials, 2016, 112:457-463. |
[4] | YE H L, JIN N G, JIN X Y, et al. Chloride ingress profiles and binding capacity of mortar in cyclic drying-wetting salt fog environments[J]. Construction and Building Materials, 2016, 127:733-742. |
[5] | SIMCIC T, PEJOVNIK S, SCHUTTER G D. Chloride ion penetration into fly ash modified concrete during wetting-drying cycles[J]. Construction and Building Materials, 2015, 93:1216-1223. |
[6] | 杨礼明, 余红发, 麻海燕, 等. 混凝土在碳化和干湿循环作用下的抗硫酸盐腐蚀性能[J]. 复合材料学报, 2012, 29(5):127-133. YANG L M, YU H F, MA H Y, et al. Resistance of concrete to magnesium sulfate attack under combined action of carbonation and dry-wet cyclesN[J]. Acta Materiae Compositae Sinica, 2012, 29(5):127-133(in Chinese). |
[7] | DAI Y C, QIAN G R, CAO Y L, et al. Effective removal and fixation of Cr(Ⅵ) from aqueous solution with Friedel's salt[J]. Journal of Hazardous Materials, 2009, 170(2-3):1086-1092. |
[8] | SAIKIA N, KATO S, KOJIMA T. Thermogravimetric investigation on the chloride binding behavior of MK-lime paste[J]. Thermochimica Acta, 2006, 444(1):16-25. |
[9] | ZHU Q, CHEN Y, XU J X, et al. Effect of chloride salt type on chloride binding behavior of concrete[J]. Construction and Building Materials, 2012, 37(37):512-517. |
[10] | THOMAS M D A, HOOTON R D, SCOTT A, et al. The effect of supplementary cementitious materials on chloride binding in hardened cement paste[J]. Cement and Concrete Research, 2012, 42(1):1-7. |
[11] | JIANG L, NIU D T. Study of deterioration of concrete exposed to different types of sulfate solutions under drying-wetting cycles[J]. Construction and Building Material, 2016, 117:88-98. |
[12] | OTSUKI N, NAGATAKI S, NAKASHITA K. Evaluation of AgNO3 solution spray method for measurement of chloride penetration into hardened cementitious matrix materials[J]. Constraction & Building Materials, 1993, 7(4):195-201. |
[13] | 关瑞, 李昌, 宋维. 分光光度法测定微量氯离子的研究与应用[J]. 化学工程师, 1999(6):43-45. GUAN R, LI C, SONG W. Study and application of spectrophotometric method for determination of micro chlorion[J]. Chemical Engineer, 1999(6):43-45(in Chinese). |
[14] | 金伟良, 金立兵, 延永东, 等. 海水干湿交替区氯离子对混凝土侵入作用的现场检测和分析[J]. 水利学报, 2009, 40(3):364-371. JIN W L, JIN L B, YAN Y D, et al. Field inspection on chloride ion 2 intrusion effect of seawater in dry 2 wet cycling zone of concrete structures[J]. Journal of Hydraulic Engineering, 2009, 40(3):364-371(in Chinese). |
[15] | LI J P, SHAO W. The effect of chloride binding on the predicted service life of RC pipe piles exposed to marine environments[J]. Ocean Engineering, 2014, 88(5):55-62. |
[16] | 姬永生, 袁迎曙. 干湿循环作用下氯离子在混凝土中的侵蚀过程分析[J]. 工业建筑, 2006, 36(12):16-23. JI Y S, YUAN Y S. Transport process of chloride in concrete under wet and dry cycles[J]. Industrial Construction, 2006, 36(12):16-23(in Chinese). |
[17] | 徐世烺, 蔡新华. 超高韧性水泥基复合材料碳化与渗透性能试验研究[J]. 复合材料学报, 2010, 27(3):177-183. XU S L, CAI X H. Experimental studies on permeability and carbonation properties of ultra high toughness cementitious composites[J]. Acta Materiae Compositae Sinica, 2010, 27(3):177-183(in Chinese). |
[18] | BIMIN-YAURI U A, GLASSER F P. Friedel's salt, Ca2Al(OH)6(Cl, OH). 2H2O:Its solid solutions and their role in chloride binding[J]. Cement and Concrete Research, 1998, 28(12):1713-1723. |
[19] | 柳俊哲, 袁伟静, 贺志敏, 等. 碳化和氯盐复合作用下水泥浆体的微结构演变[J]. 复合材料学报, 2015, 32(5):1537-1546. LIU J Z, YUAN W J, HE Z M, et al. Micro-structural evolution of cement paste under combined effect of carbonation and chloride salt[J]. Acta Materiae Compositae Sinica, 2015, 32(5):1537-1546(in Chinese). |
[20] | 曹卫群. 干湿交替环境下混凝土的氯离子侵蚀与耐久性防护[D]. 西安:西安建筑科技大学, 2013. CAO W Q. Chloride transport and cover protection of concrete under drying-wetting cycles[D]. Xi'an:Xi'an University of Architecture & Technology, 2013(in Chinese). |
[21] | SAIKIA N, KATO S, KOJIMA T. Thermogravimetric investigation on the chloride binding behavior of MK-lime paste[J]. Thermochimica Acta, 2006, 444:16-25. |
[22] | 耿健, 杨海明, 莫利伟. 硫酸钠溶液腐蚀对固化态氯离子稳定性的影响[J]. 建筑材料学报, 2015, 18(6):919-925. GENG J, YANG H M, MO L W. Effect of attack of sodium sulfate solution on the stability of bounded chloride ions[J]. Journal of Building Materials, 2015, 18(6):919-925(in Chinese). |