全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

轧制制备碳纤维/环氧树脂复合材料层合板及其成形性能
Preparation and forming properties of carbon fiber/epoxy composite laminates by rolling process

DOI: 10.13801/j.cnki.fhclxb.20171127.001

Keywords: 轧制工艺,层合板,成形性能,压下量,力学性能
rolling process
,laminate,formability,reduction,mechanical property

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究碳纤维/树脂复合材料预浸料轧制制备层合板的可行性及成形性能,基于不同轧制工艺和固化方案制备了碳纤维/环氧树脂复合材料层合板,结合三点弯曲试验和冲压试验,分析了层合板弯曲性能和温热冲压性能,观察了试样断面显微组织,并与热压罐工艺对比。结果表明,经80℃预固化-轧制-后固化工艺所得层合板综合性能优于轧制-固化和固化-轧制工艺,在压下量为0.4 mm条件下,层合板最大弯曲强度和弯曲模量较自然固化试样分别提高了23.8%和17.4%,且弯曲强度和弯曲模量均高于热压罐工艺试样。冲压过程中轧制压下量和预热温度对试样成形性影响显著,合理的压下量可提高层合板成形性,升高温度有利于试样成形,但温度过高致使试样破坏加剧皱曲增多,主要破坏区域为试样底部冲头半径轮廓,皱曲沿经纬方向与纤维成45°夹角区域明显。轧制工艺的差异对层间内部结合影响显著,较自然固化试样相比,轧制后复合材料力学性能有所改善,为碳纤维增强树脂基复合材料与金属材料轧制复合提供参考。 In order to study the feasibility and formability of the carbon fiber/epoxy composite laminates by rolling proces, it was prepared based on different process and curing scheme. The bending performance and the hot stamping properties of the laminate were analyzed by the three point bending test and stamping experiment. The microstructure of the sample section was observed. Finally, it was compared with the autoclave process. The results show that the comprehensive performance of the laminate obtained by 80℃ pre-curing-rolling-post-curing process is better than those of rolling-curing and curing-rolling process. Under the condition of reduction 0.4 mm, the maximum bending strength and modulus of the laminate increase by 23.8% and 17.4%, respectively, than that of the natural curing samples. Furthermore, the bending strength and modulus are higher than those of the autoclave process. On the stamping process, the reduction and preheating temperature have a significant effect on the forming of the sample. The reasonable reduction can improve the formability and elevated temperature is favorable for the sample formation, however, the higher temperature results in destruction of the specimen and the wrinkle increasing. The main damage area is the punch radius profile at the bottom of the sample, wrinkling along the latitude and longitude direction with fiber into a 45° angle area obvious. The difference of the process has a significant effect on the interlayer combination. Compared with the natural curing, the mechanical properties of the composites are improved after rolling. It provides reference for the recombination of carbon fiber reinforced plastic composite with metal material by rolling process. 留学人员科技活动择优资助项目(CG2016003001)

References

[1]  刘晓楠, 林静. 碳纤维复合材料在航空航天领域的应用[J]. 工业, 2016(8):00300.LIU X N, LIN J. Applications of carbon fiber composites in aerospace industry[J]. Industry, 2016(8):00300(in Chinese).
[2]  罗益锋, 罗晰旻. 近期碳纤维及其复合材料的新发展[J]. 高科技纤维与应用, 2014, 39(1):1-9.LUO Y F, LUO X M. Recent developments in carbon fiber and its composite materials[J]. Hi-Tech Fiber & Application, 2014, 39(1):1-9(in Chinese).
[3]  唐见茂. 航空航天复合材料非热压罐成型研究进展[J]. 航天器环境工程, 2014, 31(6):577-583.TANG J M. Research progress of non autoclave forming for aerospace composites[J]. Spacecraft Environment Engineering, 2014, 31(6):577-583(in Chinese).
[4]  陶家祥. 碳纤维预浸料性能与固化工艺研究[D]. 上海:东华大学, 2016.TAO J X. Study on the properties and curing process of carbon fiber prepreg[D]. Shanghai:Donghua University, 2016(in Chinese).
[5]  乌云其其格. 中温固化高性能环氧树脂碳纤维复合材料性能研究[J]. 高科技纤维与应用, 2016, 41(2):48-50.WU Y Q Q G. Study on properties of high temperature epoxy resin carbon fiber composites cured at medium temperature[J]. Hi-Tech Fiber & Application, 2016, 41(2):48-50(in Chinese).
[6]  JAGADEESH K S, SIDDARAMAIAH, KALPAGAM V. Differential scanning calorimetry cure studies on the effect of addition of epoxy diluents of tetrafunctional epoxy resins[J]. Journal of Applied Polymer Science, 2010, 40(7-8):1281-1288.
[7]  GRESHAM J, CANTWELL W, CARDEW-HALL M J, et al. Drawing behaviour of metal-composite sandwich structures[J]. Composite Structures, 2006, 75(1):305-312.
[8]  刘万双, 魏毅, 余木火. 汽车轻量化用碳纤维复合材料国内外应用现状[J]. 纺织导报, 2016(5):48-52.LIU W S, WEI Y, YU M H. Application status of carbon fiber composites at home and abroad for automotive lightweight[J]. China Textile Leader, 2016(5):48-52(in Chinese).
[9]  KARGER L, SIEGFRIED G. Fracture mechanics evaluation of RTM-CFRP materials for large-scale production of automotive structures[J]. Archivio "E.Maragliano" di Patologiae Clinica, 2014, 15:551-578.
[10]  何泽华. 我国轧制方法生产层状金属复合材料的研究现状[J]. 大众科技, 2016(4):59-62.HE Z H. Research status of layered metal composite produced by rolling method in China[J]. Popular Technology, 2016(4):59-62(in Chinese).
[11]  王旭东, 张迎晖, 徐高磊. 轧制法制备金属层状复合材料的研究与应用[J]. 铝加工, 2008(3):22-25.WANG X D, ZHANG Y H, XU G L. Research and application of metal layer composite prepared by rolling method[J]. Aluminum Processing, 2008(3):22-25(in Chinese).
[12]  孙晓磊. 碳纤维增强5052铝合金复合板的制备及性能研究[D]. 太原:太原理工大学, 2014.SUN X L. Study on the preparation and properties of carbon fiber reinforced 5052 aluminum alloy composite plate[D]. Taiyuan:Taiyuan University of Technology, 2014(in Chinese).
[13]  REYES G, KANG H. Mechanical behavior of lightweight thermoplastic fiber-metal laminates[J]. Journal of Materials Processing Technology, 2007, 186(1-3):284-290.
[14]  LIENHARD J, BOHMEW. Characterisation of RTM CFRP laminates under high-rate tension-, compression-, and shear-loading[J]. Engineering Fracture Mechanics, 2015, 149:338-350.
[15]  HO Y C, SASAYAMA H, YANAGIMOTO J. Mechanical properties and drawing process of multilayer carbon-fiber-reinforced plastic sheets with various prepreg thicknesses[J]. Advances in Mechanical Engineering, 2017, 9(3):1-12.
[16]  张明, 安学锋, 唐邦铭, 等. 高性能双组份环氧树脂固化动力学研究和TTT图绘制[J]. 复合材料学报, 2006, 23(1):17-25.ZHANG M, AN X F, TANG B M, et al. Study on curing kinetics and TTT diagram of high performance two component epoxy resin[J]. Acta Materiae Compositae Sinica, 2006, 23(1):17-25(in Chinese).
[17]  王芳. VARTM用环氧树脂固化工艺的研究[J]. 高科技纤维与应用, 2006, 31(1):41-44.WANG F. Study on curing process of epoxy resin for VARTM[J]. Hi-Tech Fiber & Application, 2006, 31(1):41-44(in Chinese).
[18]  张小平, 秦建平. 轧制理论[M]. 北京:冶金工业出版社, 2006.ZHANG X P, QIN J P. Rolling theory[M]. Beijing:Metallurgical Industry Press, 2006(in Chinese).
[19]  中国国家标准化管理委员会.定向纤维增强聚合物基复合材料弯曲性能试验方法:GB/T 3356-2014[S]. 北京:中国标准出版社, 2015.China National Standardization Management Committee. Test method for flexural properties of oriented fiber reinforced polymer matrix composites:GB/T 3356-2014[S]. Beijing:Standards Press of China, 2015(in Chinese).
[20]  HADIGHEH S A, GRAVINA R J, SETUNGE S. Identification of the interfacial fracture mechanism in the FRP laminated substrates using a modified single lap shear test set-up[J]. Engineering Fracture Mechanics, 2015, 134:317-329.
[21]  RAJABI A, KADKHODAVAN M, MANOOCHEHRI M, et al. Deep-drawing of thermoplastic metal-composite structures:Experimental investigations, statistical analyses and finite element modeling[J]. Journal of Materials Processing Tech, 2015, 215:159-170.
[22]  LEE M S, KANG C G. Determination of forming procedure by numerical analysis and investigation of mechanical properties of steel/CFRP hybrid composites with complicated shapes[J]. Composite Structures, 2016, 164:118-129.
[23]  陈超, 张娅婷, 顾轶卓, 等. 碳纤维/环氧树脂复合材料孔隙缺陷的工艺影响因素研究[J]. 玻璃钢/复合材料, 2014(5):51-55.CHEN C, ZHANG Y T, GU Y Z, et al. Study on Influencing factors of pore defects in carbon fiber/epoxy composites[J]. Fiber Reinforced Plastics/Composites, 2014(5):51-55(in Chinese).
[24]  MOSSE L, COMPSTON P, CANTWELL W J, et al. The effect of process temperature on the formability of polypropylene based fibre-metal laminates[J]. Composites Part A:Applied Science & Manufacturing, 2005, 36(8):1158-1166.
[25]  刘小龙, 顾轶卓, 李敏, 等. 采用薄膜传感器的树脂基复合材料热压罐工艺密实压力测试方法[J]. 复合材料学报, 2013, 30(5):67-73.LIU X L, GU Y Z, LI M, et al. Resin dense test method for resin matrix composite material with thin film sensor[J]. Acta Materiae Compositae Sinica, 2013, 30(5):67-73(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133