|
- 2018
静电纺聚乙烯-乙烯醇磺酸锂/聚酰亚胺锂离子电池隔膜复合材料的电化学性能
|
Abstract:
以3,3',4,4'-二苯甲酮四羧酸二酐和4,4-二氨基二苯醚为原料合成聚酰胺酸(PAA)纺丝液,通过高压静电纺丝和热亚胺化制备聚酰亚胺(PI)纤维膜,然后将聚乙烯-乙烯醇磺酸锂(EVOH-SO3Li)以高压静电纺丝和加热加压的方式覆盖在PI纤维膜表面,制备EVOH-SO3Li/PI锂离子电池隔膜复合材料。通过FTIR、SEM、万能拉伸试验仪、接触角测试仪和IM6型电化学工作站对EVOH-SO3Li/PI锂离子电池隔膜复合材料的性能进行测试与表征。结果表明:EVOH-SO3Li/PI锂离子电池隔膜复合材料具有较清晰的三维网状结构,与PI隔膜相比,纤维间粘连现象明显增加,在降低孔隙率同时,吸液率和拉伸强度分别提高至521%和12.83 MPa,并表现出较好的热收缩稳定性、高温闭孔性能和电化学性能。其中电化学稳定窗口从5.5 V提高至5.8 V,界面阻抗从360 Ω降低至315 Ω,离子电导率从2.416×10-3 S/cm提高至3.672×10-3 S/cm。 Polyamic acid(PAA) spinning solution was fabricated by using benzophenone-3,3',4,4'-tetracarboxylic dianhydride and 4,4-diaminodiphenyl ether as raw materials, and the polyimide(PI) fiber membranes were prepared by high-pressure electrospinning and thermal imidization. Then, lithium ethylene-vinyl alcohol copolymer sulfate(EVOH-SO3Li)/PI li-ion battery separator composites were prepared by introduction of EVOH-SO3Li fiber on both sides of PI membranes surface through high-pressure electrospinning and heating pressure treatment. The performance of EVOH-SO3Li/PI li-ion battery separator composite was characterized by FTIR, SEM, universal tensile tester, contact angle meter and IM6 electrochemical workstation. The results show that EVOH-SO3Li/PI separator has a clear three-dimensional network structure. Compared with PI separator, the absorption rate and tensile strength of modified EVOH-SO3Li/PI separator composites increase to 521% and 12.83 MPa although the porosity reduces. The excellent thermal shrinkage rate, closed-cell at high temperature and electrochemical performance were exhibited. Then, the electrochemical window increases from 5.5 V to 5.8 V, the bulk resistance decreases from 360 Ω to 315 Ω, and the ion conductivity increases from 2.416×10-3 S/cm to 3.672×10-3 S/cm.
[1] | AEMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451, 652-657. |
[2] | JANSEN A N, KAHAIAN A J, KEPLER K D, et al. Development of a high-power lithium-ion battery[J]. Journal of Power Sources, 1999, s81-82(9):902-905. |
[3] | XIONG M, TANG H, WANG Y, et al. Ethylcellulose-coated polyolefin separators for lithium-ion batteries with improved safety performance[J]. Carbohydrate Polymers, 2014, 101(2):1140-1146. |
[4] | WANG C Y, ZHANG G, GE S, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587):515-518. |
[5] | LI F S, WU Y S, CHOU J, et al. A mechanically robust and highly ion conductive polymer blend coating for high power and long life lithium ion battery anodes[J]. Advanced Materials, 2015, 27(1):130-137. |
[6] | QUARTARONE E, MUSTARELLI P. Electrolytes for solid-state lithium rechargeable batteries:Recent advances and perspectives[J]. Chemical Society Reviews, 2011, 40(5):2525-2540. |
[7] | YOSHINO A. The birth of the lithium-ion battery[J]. Angewandte Chemie International Edition, 2012, 51(24):5798-5800. |
[8] | HUANG X S. Separator technologies for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2011, 15(4), 649-662. |
[9] | YANG C L, LI Z H, LI W J et al. Batwing-like polymer membrane consisting of PMMA-grafted electrospun PVDF-SiO2 nanocomposite fibers for lithium-ion batteries[J]. Journal of Membrane Science, 2015, 495(1):341-350. |
[10] | NOTO V D, LAVINA S, GIFFIN G A, et al. Polymer electrolytes:Present, past and future[J]. Electrochimica Acta, 2011, 57(1):4-13. |
[11] | LI H, MA X T, SHI J L, et al. Preparation and properties of poly(ethylene oxide)gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries[J]. Electrochimica Acta, 2011, 56(6):2641-2647. |
[12] | MIAO Y E, ZHU G N, HOU H, et al. Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries[J]. Journal of Power Sources, 2013, 226(6):82-86. |
[13] | GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery:A perspective[J]. Journal of the American Chemical Society, 2013, 135(4):1167-1176. |
[14] | DING Y, HOU H, ZHAO Y, et al. Electrospun polyimide nanofibers and their applications[J]. Progress in Polymer Science, 2016, 61:67-103. |
[15] | LU L, HAN X, LI J, et al. A review on the key issuesfor lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226(3):272-288. |
[16] | SHI J H, CHEN Z Y, QIN Y J, et al. Multiwalled carbon nanotube microspheres from layer-by-layer assembly and calcination[J]. Journal of Physical Chemistry C, 2008, 112(31):11617-11622. |
[17] | 吴再辉, 秦珊, 白帆, 等. 阻抗渐变低介电BaTiO3/PVDF复合纤维膜的设计与电纺制备[J]. 复合材料学报, 2016, 33(8):1671-1676. WU Zaihui, QIN Shan, BAI Fan, el al. Design and fabrication of low-dielectric BaTiO3/PVDF composite fibrous mat with impedance gradient by electrospinning[J]. Acta Materiae Compositae Sinica, 2016, 33(8):1671-1676(in Chinese). |
[18] | 王春红, 贺文婷, 王瑞. 利用静电纺丝技术制备纳米黏土/聚乳酸复合纳米纤维与其表征[J]. 复合材料学报, 2015, 32(2):378-384.WANG Chunhong, HE Wenting, WANG Rui. Preparation and characterization of nanoclay/polylactide composite nanofibers via electrospinning technique[J]. Acta Materiae Compositae Sinica, 2015, 32(2):378-384(in Chinese). |
[19] | FANG J, WANG X G, LIN T. Functional applications of electrospun nanofibers[J]. Nanofibers-Production, Properties and Functional Applications, 2011, 31(15):2256-2286. |
[20] | ZHANG J J, LIU Z H, KONG Q S, et al. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator[J]. ACS Applied Materials & Interfaces, 2012, 5(1):128-134. |
[21] | HAO J, LEI G, LI Z, et al. A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery[J]. Journal of Membrane Science, 2013, 428:11-16. |
[22] | SHEN J F, HU Y Z, QIN C, et al. Layer-by-layer self-assembly of multiwalled carbon nanotube polyelectrolytes prepared by in situ radical polymerization[J]. Langmuir, 2008, 24(8):3993-3997. |
[23] | MA R Z, LIU Z P, LI L, et al. Exfoliating layered double hydroxides in form amide:A method to obtain positively charged nanosheets[J]. Journal of Materials Chemistry, 2006, 16(39):3809-3813. |